转炉生产技术现状和A技术应用展望  

Current status of converter production technology and prospects for AI technology application

在线阅读下载全文

作  者:崔政 Cui Zheng(Research and Development Department of jianlong Beiman Special Steel Co.,Ltd.,Qiqihar 016000,Heilongjiang,China)

机构地区:[1]建龙北满特殊钢有限责任公司研发部,黑龙江齐齐哈尔016000

出  处:《特钢技术》2025年第1期1-4,共4页Special Steel Technology

摘  要:“双碳”减排目标的提出推动了转炉生产流程向绿色化转型,但在激烈的钢铁行业竞争中,技术创新仍是应对挑战和提升竞争力的关键。本文采用文献综述法,对近年来国内外钢铁厂在转炉自动化技术、循环渣处理技术、少渣冶炼技术、转炉长寿命技术以及钢渣再利用技术等领域的研究进展进行了系统性归纳与总结。通过分析现有技术的应用现状,进一步探讨了基于人工智能(AI)深度学习技术的转炉生产新技术,特别是转炉炼钢终点碳含量预测技术和转炉炼钢吹氧量预测技术的未来发展方向。研究指出,AI深度学习的应用有望加速钢铁行业的智能化转型,并推动钢铁生产流程的精细化管理和能源效率的提升,最终助力实现钢铁产业的绿色低碳目标。The proposal of the“dual carbon”emission reduction target has promoted the transformation of the converter production process towards greenization,but in the fierce competition in the steel industry,technological innovation remains the key to addressing challenges and enhancing competitiveness.This article adopts a literature review method to systematically summarize and generalize the research progress of domestic and foreign steel plants in the felds of converter automation technology,circulating slag treatment technology,low slag smelting technology,converter long life technology,and steel slag reuse technology in recent years.By analyzing the current application status of existing technologies,this paper further explores new technologies for converter production based on artificial intelligence(Al)deep learning technology,especially the future development directions of endpoint carbon content prediction technology and oxygen blowing prediction technology for converter steelmaki21ng.Research suggests that the application of AI deep learning is expected to accelerate the intelligent transformation of the steel industry,promote refined management of steel production processes,and improve energy eficiency,ultimately helping to achieve the green and low-carbon goals of the steel industry.

关 键 词:转炉 生产技术 AI深度学习 展望 

分 类 号:TF142.3[冶金工程—冶金物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象