检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔政 Cui Zheng(Research and Development Department of jianlong Beiman Special Steel Co.,Ltd.,Qiqihar 016000,Heilongjiang,China)
机构地区:[1]建龙北满特殊钢有限责任公司研发部,黑龙江齐齐哈尔016000
出 处:《特钢技术》2025年第1期1-4,共4页Special Steel Technology
摘 要:“双碳”减排目标的提出推动了转炉生产流程向绿色化转型,但在激烈的钢铁行业竞争中,技术创新仍是应对挑战和提升竞争力的关键。本文采用文献综述法,对近年来国内外钢铁厂在转炉自动化技术、循环渣处理技术、少渣冶炼技术、转炉长寿命技术以及钢渣再利用技术等领域的研究进展进行了系统性归纳与总结。通过分析现有技术的应用现状,进一步探讨了基于人工智能(AI)深度学习技术的转炉生产新技术,特别是转炉炼钢终点碳含量预测技术和转炉炼钢吹氧量预测技术的未来发展方向。研究指出,AI深度学习的应用有望加速钢铁行业的智能化转型,并推动钢铁生产流程的精细化管理和能源效率的提升,最终助力实现钢铁产业的绿色低碳目标。The proposal of the“dual carbon”emission reduction target has promoted the transformation of the converter production process towards greenization,but in the fierce competition in the steel industry,technological innovation remains the key to addressing challenges and enhancing competitiveness.This article adopts a literature review method to systematically summarize and generalize the research progress of domestic and foreign steel plants in the felds of converter automation technology,circulating slag treatment technology,low slag smelting technology,converter long life technology,and steel slag reuse technology in recent years.By analyzing the current application status of existing technologies,this paper further explores new technologies for converter production based on artificial intelligence(Al)deep learning technology,especially the future development directions of endpoint carbon content prediction technology and oxygen blowing prediction technology for converter steelmaki21ng.Research suggests that the application of AI deep learning is expected to accelerate the intelligent transformation of the steel industry,promote refined management of steel production processes,and improve energy eficiency,ultimately helping to achieve the green and low-carbon goals of the steel industry.
分 类 号:TF142.3[冶金工程—冶金物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222