矿石块度检测系统在溜井装矿环节的应用  

Application of ore block identification system in ore chute loading

在线阅读下载全文

作  者:郭帅 GUO Shuai(China ENFI Engineering Corporation,Beijing 100038,China)

机构地区:[1]中国恩菲工程技术有限公司,北京100038

出  处:《有色设备》2025年第2期56-61,共6页Nonferrous Metallurgical Equipment

摘  要:本文针对有轨运输无人驾驶溜井自动装载环节大块多、易卡斗等工况,基于器视觉库OpenCV和YOLO(You Only Look Once)训练模型的应用设计,构建了一套能够实现矿石块度计算、矿石块度数量及时间分布统计、超大块度实时报警及查询等功能的矿石块度识别系统,实现了对溜井放矿矿石块度的检测与管理,确保了有轨运输无人驾驶工况下的放矿作业设备安全,同时减轻了人工监视劳动强度,为矿山无人化系统的实施和数字化转型提供借鉴。This paper aiming at the working conditions of large ore blocks and easy jamming in the automatic loading process of unmanned rail transportation,constructs an ore block size recognition system based on the application design of machine vision library OpenCV and YOLO training model.The system can realize the functions of ore block size calculation,ore block size quantity and time distribution statistics,real-time alarm and query of super large blocks,etc.,realize the detection and management of ore block size in the chute,ensure the safety of ore discharge equipment under the working conditions of unmanned rail transportation,and reduce the labor intensity of manual monitoring,providing reference for the implementation of unmanned mine system and digital transformation.

关 键 词:块度识别 图像识别 井下有轨运输 智能矿山 矿石 金属矿山 检测 

分 类 号:TD65[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象