多模态磁共振在腰椎间盘突出症微创术前后神经根评估中的应用进展  

Advances in the application of multimodal magnetic resonance imaging for nerve root assessment before and after minimally invasive surgery for lumbar disc herniation

在线阅读下载全文

作  者:孙琦 肖文丰[2] SUN Qi;XIAO Wenfeng(School of Medical Imaging,Binzhou Medical University,Yantai 264003,China;Department of Medical Imaging,Shengli Oilfield Central Hospital,Dongying 257034,China)

机构地区:[1]滨州医学院医学影像学院,烟台264003 [2]胜利油田中心医院医学影像科,东营257034

出  处:《磁共振成像》2025年第4期221-227,共7页Chinese Journal of Magnetic Resonance Imaging

基  金:2024年度东营市自然科学基金卫生健康高质量发展联合基金项目(编号:2024ZRWS011)。

摘  要:腰椎间盘突出症(lumbar disc herniation,LDH)是一种常见的脊柱疾病,严重影响患者生活质量。随着微创手术技术的发展,经皮内镜腰椎间盘切除术(percutaneous endoscopic lumbar discectomy,PELD)因其创伤小、恢复快等优势逐渐成为主流治疗方式。然而,传统影像学技术在神经根功能评估方面存在局限性,难以全面反映神经根的微观结构和功能状态。多模态磁共振技术,如磁共振神经成像(magnetic resonance neurography,MRN)、弥散张量成像(diffusion tensor imaging,DTI)、弥散张量纤维束成像(diffusion tensor tractography,DTT)通过结合形态学与功能学评估,能够更精确地显示神经根的受压情况、损伤程度及术后恢复状态,为LDH的诊断、手术规划和疗效评估提供了重要依据。近年来,人工智能技术在医学影像分析中的应用为LDH的自动检测和神经根评估带来了新的突破。基于深度学习的图像重建和分割技术显著提高了图像质量和诊断效率。未来研究需进一步优化人工智能算法,结合多模态磁共振技术,探索其在LDH微创术前后神经根评估中的潜力,以提升诊断准确性和治疗效果。本文通过系统综述多模态磁共振技术在LDH微创术前后神经根评估中的应用现状,分析其优势与局限性,并探讨未来与人工智能结合的发展方向,旨在为临床优化诊疗决策、科研探索神经根损伤机制提供参考。Lumbar disc herniation(LDH) is a common spinal disorder that significantly impacts patients' quality of life.With advancements in minimally invasive surgical techniques,percutaneous endoscopic lumbar discectomy(PELD) has emerged as a mainstream treatment option due to its advantages of minimal trauma and rapid recovery.However,conventional imaging techniques have limitations in assessing nerve root function,making it difficult to comprehensively evaluate the microstructure and functional status of nerve roots.Multimodal magnetic resonance imaging(MRI) techniques,such as magnetic resonance neurography(MRN),diffusion tensor imaging(DTI),and diffusion tensor tractography(DTT),integrate morphological and functional assessments to more accurately visualize nerve root compression,injury severity,and postoperative recovery.These methods provide critical insights for LDH diagnosis,surgical planning,and treatment efficacy evaluation.In recent years,the application of artificial intelligence(AI) in medical image analysis has brought breakthroughs in automated LDH detection and nerve root assessment.Deep learning-based image reconstruction and segmentation techniques have significantly improved image quality and diagnostic efficiency.Future research should focus on optimizing AI algorithms and exploring their potential in conjunction with multimodal MRI for pre-and postoperative nerve root evaluation in LDH,aiming to enhance diagnostic accuracy and therapeutic outcomes.This article provides a systematic review of the current application status of multimodal MRI in the evaluation of nerve roots before and after minimally invasive LDH surgery,analyzes its advantages and limitations,and explores the future development direction of combining with artificial intelligence.The aim is to provide reference for optimizing clinical diagnosis and treatment decisions and exploring the mechanism of nerve root injury in scientific research.

关 键 词:腰椎间盘突出症 腰骶神经根 椎间孔镜下腰椎间盘切除术 磁共振成像 深度学习 

分 类 号:R445.2[医药卫生—影像医学与核医学] R681.57[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象