《宋仁宗后坐像》服饰数字化复原研究  

Digital reconstruction of attire in the Seated Portrait of Empress Consort of Emperor Renzong of the Song Dynasty

在线阅读下载全文

作  者:郑姚 李露霖 王莉 ZHENG Yao;LI Lulin;WANG Li(School of Fashion Media,Jiangxi Institute of Fashion Technology,Nanchang 330201,China)

机构地区:[1]江西服装学院时尚传媒学院,江西南昌330201

出  处:《染整技术》2025年第4期87-91,共5页Textile Dyeing and Finishing Journal

基  金:2024年江西省社会科学基金艺术学青年项目:中国传统服饰色彩中的“白色”文化研究(24YS35);2024年国家级大学生创新创业训练计划项目:“流动的传统”——基于中国古画中传统服饰的数字化复原(202413418001)。

摘  要:南薰殿旧藏《宋仁宗后坐像》作为宋代帝后形象的重要视觉资料,对研究宋代宫廷服饰具有重要的参考价值。由于时光流逝和物质损毁,仅凭图像难以全面展现服饰细节,数字化复原的介入显得尤为必要。基于传世文献、绘画及出土实物,通过2D结构复原和3D建模等技术手段,对《宋仁宗后坐像》中曹皇后和侍女的首服、体服及妆容进行数字化重构。研究表明,数字化复原不仅弥补了历史文物和图像研究的不足,还为传统服饰文化的保护和传播提供了创新路径,对宋代服饰美学和文化价值的深入理解具有重要意义。Seated Portrait of Empress Consort of Emperor Renzong of the Song Dynasty,formerly housed in the Nanxun Hall of the Forbidden City,serves as an important visual reference for the representation of imperial figures in the Song Dynasty and holds significant value for the study of court attire of that period.Due to the passage of time and material deterioration,images alone are insufficient to fully reveal the intricate details of the clothing,making digital reconstruction particularly necessary.Based on historical texts,paintings,and excavated artifacts,this study employs 2D structural restoration and 3D modeling techniques to digitally reconstruct the headwear,attire,and makeup of Empress Cao and her attendants as depicted in the Seated Portrait of Empress Consort of Emperor Renzong of the Song Dynasty.The findings indicate that digital restoration not only compensates for the limitations of historical artifact and image studies but also provides an innovative approach to the preservation and dissemination of traditional clothing culture.Moreover,it offers valuable insights into the aesthetics and cultural significance of Song Dynasty attire.

关 键 词:袆衣 宋妆 数字复原 九龙四凤冠 “一年景”花冠 《宋仁宗后坐像》 

分 类 号:J523[艺术—艺术设计] J8

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象