机构地区:[1]中北大学,宽禁带半导体超越照明材料与技术全国重点实验室,太原030051 [2]中北大学仪器与电子学院,太原030051 [3]中北大学半导体与物理学院,太原030051 [4]中北大学,量子传感与精密测量山西省重点实验室,太原030051 [5]日本大阪大学,工学研究科精密科学应用物理学,大阪5650871,日本 [6]北京航空航天大学仪器科学与光电工程学院,北京100191
出 处:《物理学报》2025年第9期104-116,共13页Acta Physica Sinica
基 金:国家重点研发计划(批准号:2022YFC2204104);国家自然科学基金国际合作与交流项目(批准号:62220106012);山西省杰出青年基金(批准号:202103021221007);山西量子传感与精密测量国际联合实验室(批准号:202204041101015);山西省基础研究发展计划(批准号:202203021212502)资助的课题。
摘 要:原子自旋成像技术对气室内温度分布、旋光角检测以及镀膜抗弛豫特性测量至关重要,其关键在于精确捕捉并解析原子自旋极化的复杂时空动态特性,这些特性直接关系到磁强计带宽的扩展及磁梯度检测的灵敏度提升.传统的气室内分割成像方法因静态特性限制,无法实时捕捉原子自旋极化态的动态演变过程,制约了量子测量仪器的性能提升.针对这一挑战,本研究提出了一种实时调控原子自旋极化态的碱金属原子气室动态自旋成像方法,在空间分布上实时控制光束阵列中不同位置激光束的连续通断;在时间序列上控制光束阵列中每束光的通断频率变化,从而生成具有特定空间分布和频率特性的激光,分别与气室内部不同位置的碱金属原子相互作用,诱导原子自旋极化程度的变化.通过对激光特性的精细调节,当泵浦光的调制频率与原子在磁场中的拉莫尔频率相匹配时,原子自旋极化达到最大值,系统处于共振状态;当调制频率与拉莫尔频率不匹配时,原子自旋极化程度降低.通过这种频率调制方法实现了对原子自旋极化状态地动态操控.实验结果表明,该方法达到95.9μm的空间分辨率和355帧的时间分辨率,显著优于传统静态自旋成像方法.此方法增强了对原子自旋极化动态特性的认知,能更精确地观测并分析磁场分布的动态特征,从而为量子仪表性能的进一步优化提供坚实的实验依据与有力支持.With the state-of-the-art quantum measurement devices,such as atomic clocks,atomic gyroscopes,and atomic magnetometers,as their central components,the spatiotemporal evolution of atomic spin polarization in the atomic vapor cell has a major effect on both increasing the bandwidth of magnetometer and improving the accuracy of magnetic gradient measurements.However,the major factor impeding the further improvement of the performance of quantum measurement instrument is the inherent static nature of the traditional intra-vapor cell segmentation imaging technique,which makes it challenging to achieve the real-time capture of the dynamic evolution of atomic spin states.In this work,we suggest a dynamic spin imaging method for alkali metal atomic vapor cells with real-time modification of atomic spin polarization states in order to overcome this technological difficulty.In particular,to ensure that the laser can precisely act on the alkali metal atoms in various regions in the vapor cell,we employ a complex beam array management system to modify the on/off state of the laser beams at various positions in the spatial dimension in real time.In the meantime,we generate laser fields with particular spatial distribution and frequency characteristics by using frequency modulation techniques in the time series to accurately regulate the on-off frequency of each laser beam in the beam array.These laser beams cause dynamic changes in the atomic spin polarization state by interacting with alkali metal atoms at various points in the vapor cell.Through precise adjustment of the laser properties,we can see and study the dynamic evolution of the atomic spin-polarization state in real time.According to the experimental data,the technology outperforms the traditional static spin imaging techniques by achieving an excellent temporal resolution of 355 frames per second and a spatial resolution of 95.9 micrometers.The effective use of this method enables us to monitor and evaluate the dynamic aspects of magnetic field distribution with u
分 类 号:O562[理学—原子与分子物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...