检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱应苗 袁瑞佳 李永奎[2] QIAN Yingmiao;YUAN Ruijia;LI Yongkui(School of Management Science and Engineering,Anhui University of Finance and Economics,Bengbu 233030,China;School of Economics and Management,Tongji University,Shanghai 100098,China)
机构地区:[1]安徽财经大学管理科学与工程学院,安徽蚌埠233030 [2]同济大学经济与管理学院,上海100098
出 处:《工程管理科技前沿》2025年第2期41-48,共8页Frontiers of Science and Technology of Engineering Management
基 金:国家社会科学基金青年资助项目(23CGL021)。
摘 要:本文从经济、社会、生态、信息与科技等维度构建中国智慧城市韧性水平测度指标体系,以103个智慧城市试点2013-2022年的数据为样本,基于二次加权因子分析法和核密度估计,测算智慧城市韧性水平各维度的得分与综合水平,揭示各区域在不同时间段的动态演进趋势与特征。研究发现:总体水平上,智慧城市韧性呈上升趋势,但不同区域之间的韧性水平存在显著差异。东部及沿海地区表现最佳,而东北地区则相对较低:智慧城市韧性水平各子维度上,东部及沿海地区的智慧城市在经济韧性、社会韧性和信息与科技韧性方面始终保持领先。研究结果为评估智慧城市韧性水平提供科学的测度指标体系和方法,为智慧城市建设、管理以及韧性提升提供理论依据与指导价值,有助于推动我国智慧城市的健康发展。The smart cities resilience level is a critical indicator of their ability to maintain stability and recover quickly from natural disasters,social crises,and economic fluctuations.While China has made progress in smart city development,significant regional differences of resilience level highlight the need for systematic measurement and evaluation.This study aims to explore the dynamic evolution and regional differences of smart cities resilience level in China,offering theoretical support for urban management and policymaking.In this study,we utilize the quadratic weighted factor analysis method and kernel density estimation to establish a measurement index system for smart cities resilience level,encompassing dimensions such as economy,society,ecology,information,and technology.The data are sourced from the statistical yearbooks of 103 smart city pilot projects between 2013 and 2022,including the“China Urban Construction Statistical Yearbook”and the“China City Statistical Yearbook.”The study standardizes the data through dimensionless processing and applies quadratic weighted factor analysis for both itemized and comprehensive measurements of each dimension.Kernel density estimation is also used to analyze regional differences of resilience level and their dynamic evolutionary trends.The findings show an upward trend in the overall smart cities resilience level,though significant regional differences remain.The eastern and coastal regions perform best in terms of economic,social,and information technology resilience,while the northeastern region shows comparatively lower resilience.The study also reveals the dynamic evolution of resilience level across regions over time,providing empirical evidence for understanding regional differences.The innovation of this study lies in the construction of a scientific measurement index system for the resilience of smart cities,providing a quantitative tool for assessing and enhancing the resilience of smart cities.The results of the study provide a basis for city ma
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171