检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙亚龙 王磊 胡泽里龙 王新宇 杨洁萌 张莹莹 赵立伟 都承斐[1] 莫中军 SUN Yalong;WANG Lei;HU Zelilong;WANG Xinyu;YANG Jiemeng;ZHANG Yingying;ZHAO Liwei;DU Chengfei;MO Zhongjun(Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control,National Experimental Teaching Demonstration Center of Electromechanical Engineering,Tianjin University of Technology,Tianjin 300384,China;Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs,Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability,National Research Center for Rehabilitation Technical Aids,Beijing 100176,China)
机构地区:[1]天津理工大学天津市先进机电系统设计与智能控制重点实验室,机电工程国家级实验教学示范中心,天津300384 [2]国家康复辅具研究中心民政部人体运动分析与康复技术重点实验室,北京市老年功能障碍康复辅助技术重点实验室,北京100176
出 处:《医用生物力学》2025年第2期371-377,共7页Journal of Medical Biomechanics
基 金:国家自然科学基金项目(82272127);北京市自然科学基金-海淀原始创新联合基金(L222031);中央级公益性科研院所基本科研业务费专项(118009001000160001);天津市研究生科研创新项目(2022SKYZ115)。
摘 要:目的研究矫形器修型量对脊柱侧弯矫正效果及支撑界面压力的影响。方法建立脊柱侧弯有限元模型模拟矫形器装配效果。矫形器简化为4个施力区(左肋区、右肋区、左前区和右后区),模拟6种修型工况:模型1、2、3左前、右后区修型量保持20 mm,左、右肋区均分别施加20、25、30 mm位移载荷;模型4、5、6左、右肋区修型量保持25 mm,左前、右后区均分别施加15、20、25 mm位移载荷,计算侧凸脊柱Cobb角、顶椎旋转角度(apical vertebra rotation,AVR)和支撑界面压力。结果模型1、2、3中Cobb角矫正度数分别为8.94°、15.62°、17.91°,AVR矫正度数分别为7.53°、6.69°、5.87°;模型4、5、6 Cobb角矫正度数分别为14.55°、15.62°、16.09°,AVR矫正度数分别为5.25°、6.69°、8.63°。模型6的Cobb角和AVR矫正率分别为45.48%和41.22%,综合矫形效果最明显,其最大支撑界面压力为26.51 kPa。结论修型量对脊柱侧凸Cobb角和AVR的矫正具有积极影响;左、右肋区施力对Cobb角的矫正起主要作用,左前、右后区施力对脊柱去旋转起主要作用;各区域修型量为25 mm可产生较好的矫正效果。本研究可为临床矫形器的设计提供数据支撑。Objective To investigate the effect of orthosis design parameters on correction of scoliosis and orthosis-trunk interface pressure.Methods A finite element model of scoliosis was constructed to simulate the assembly effect of the orthosis.The orthosis was divided into four loading areas(left rib,right rib,anterior-left and posterior-right area)to simulate six modification conditions.In Models 1,2 and 3,a fixed modification of 20 mm was applied on the anterior left and posterior right areas,while the displacement loads of 20,25 and 30 mm were applied on both the left rib and right rib areas.In Models 4,5 and 6,a fixed modification of 25 mm was applied on left rib and right rib areas,with the displacement loads of 15,20 and 25 mm applied on both anterior left and posterior right areas.The Cobb angle,apical vertebral rotation(AVR)and interface pressure were calculated.Results The correction of Cobb angle in Models 1,2 and 3 was 8.94°,15.62°and 17.91°,respectively,with AVR correction of 7.53°,6.69°and 5.87°,respectively.In Models 4,5 and 6,the correction of Cobb angle was 14.55°,15.62°and 16.09°,with AVR correction of 5.25°,6.69°and 8.63°,respectively.In Model 6,the correction rate of Cobb angle and AVR was 45.48%and 41.22%,respectively,with a maximum pressure of 26.51 kPa on orthosis-trunk interface,achieving the most significant outcome.Conclusions The modification of orthosis has a significant effect on the correction of Cobb and AVR angles.The loading on the left rib and right rib areas mainly affect the Cobb angle,while the loading on the anterior left and posterior right areas mainly affect the spinal axial-rotation.A modification of 25 mm on all loading areas achieves the optimal spinal correction.This study provides the quantitative data for orthosis design.
关 键 词:脊柱侧凸矫形 生物力学建模仿真 修型量 COBB角 椎体旋转
分 类 号:R318.01[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7