检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜剑波 董伟哲 金蓉 王军选 康嘉文 刘雷 策力木格 DU Jianbo;DONG Weizhe;JIN Rong;WANG Junxuan;KANG Jiawen;LIU Lei;Celimuge Wu(Shaanxi Key Laboratory of Information Communication Network and Security,School of Communications and Information Engineering,Xi′an University of Posts and Telecommunications,Xi′an 710121,Shaanxi,China;Office of Academic Affairs,Xi′an University of Posts and Telecommunications,Xi′an 710121,Shaanxi,China;School of Automation,Guangdong University of Technology,Guangzhou 510006,Guangdong,China;Guangzhou Research Institute,Xidian University,Guangzhou 510555,Guangdong,China;The University of Electro-Communications,Tokyo 182-8585,Japan)
机构地区:[1]西安邮电大学通信与信息工程学院陕西省信息通信网络与安全重点实验室,陕西西安710121 [2]西安邮电大学教务处,陕西西安710121 [3]广东工业大学自动化学院,广东广州510006 [4]西安电子科技大学广州研究院,广东广州510555 [5]日本电气通信大学,日本东京182-8585
出 处:《计算机工程》2025年第5期43-51,共9页Computer Engineering
基 金:国家自然科学基金(62271391);陕西省教育厅服务地方专项科研项目(21JC032)。
摘 要:在6G时代,空天地一体化网络(SAGIN)可以为物联网(IoT)设备提供无处不在的覆盖,能有效解决当前网络架构覆盖能力不足的问题。多接入边缘计算(MEC)是一种非常重要的技术,可以进一步增强SAGIN的服务能力,其中MEC在有效降低任务执行延迟和系统能耗方面表现出显著的能力。提出一种支持MEC的SAGIN架构,其中卫星和多架无人机(UAV)作为边缘节点,为IoT设备就近提供算力。通过IoT设备的任务分割以及UAV和卫星的带宽分配,实现网络平均总能耗的最小化。将网络动态性问题表述为马尔可夫决策过程(MDP)问题,提出一种基于深度确定性策略梯度(DDPG)的自适应决策算法对其进行求解。仿真结果表明,该算法在最小化网络能耗和DDPG代理累计奖励最大化方面表现出良好的性能。In the 6G era,a Space-Air-Ground Integrated Network(SAGIN)can provide ubiquitous coverage for Internet of Things(IoT)devices and can therefore effectively address the current inadequacies in network architecture coverage capabilities.Multi-access Edge Computing(MEC)is a crucial technology that further enhances the service capabilities of SAGIN,demonstrating significant abilities in reducing task execution latency and system energy consumption.This paper proposes an MEC-based SAGIN architecture in which satellites and multiple Unmanned Aerial Vehicles(UAVs)act as edge nodes that offers computational power in close proximity to IoT devices.Through the task segmentation of IoT devices and bandwidth allocation for UAVs and satellites,the proposed architecture intends to minimize the average network energy consumption.The problem of high network dynamics is reformulated as a Markov Decision Process(MDP),and a low-complexity adaptive decision algorithm based on Deep Deterministic Policy Gradient(DDPG)is introduced as its solution.Simulation results demonstrate that the algorithm performs well in minimizing network energy consumption and maximizing the cumulative rewards for the DDPG Agent.
关 键 词:深度确定性策略梯度算法 空天地一体化网络 边缘计算 资源分配 任务分割
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7