基于脑电信号和瞬时情感强度的情感角色划分  

Emotional Role Classification Based on the EEG and Instantaneous Affective Intensities

在线阅读下载全文

作  者:李汭钉 甘开宇 尹钟[1] LI Ruiding;GAN Kaiyu;YIN Zhong(School of Optical-Electrical Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《电子科技》2025年第5期46-52,共7页Electronic Science and Technology

基  金:国家自然科学基金(61703277);上海青年科技英才扬帆计划(17YF1427000)。

摘  要:现有情感计算研究使用固定情感标签训练一个情感分类器,但经历情感刺激个体的脑电信号(Electroencephalogram,EEG)和真实情感变化均为动态而非恒定的,不同个体由情感刺激触发的生理和主观动态反应不同。针对该问题,文中依据自采集的情感点击强度和公开数据集SEED-IV中的脑电数据,将被试者分为高低情感代入角色并生成了两类情感强度标签。使用脑电信号特征和情感强度标签在4种机器学习进行瞬时情感强度回归预测,根据回归结果分析了两类情感角色群体在两类情感强度标签上的适用性。回归结果表明,不同情感角色在不同情绪下的瞬时情感强度变化不同,情感角色在相对应的情感强度标签上能够展现更好的回归结果,划分情感角色能更好地辅助分析个体瞬时情感变化。Existing affective computing studies use fixed affective labels to train an affective classifier.However,the EEG(Electroencephalogram)and true affective changes of individuals experiencing emotional stimuli are dynamic rather than constant,and different individuals have different physiological and subjective dynamic responses triggered by emotional stimuli.To address these issues,this study uses self-collected data on emotional click intensity and EEG data from the public dataset SEED-IV to categorize subjects into high and low emotional roles,which generates two types of affective intensity labels.Instantaneous affective intensity regression prediction is performed using electroencephalogram signal features and affective intensity labels across four machine learning models.According to the regression results,the applicability of two kinds of affective role groups to two kinds of affective intensity labels is analyzed.The regression results show that different emotional roles have different changes in the instantaneous emotional intensity under different emotions,and emotional roles can show better regression results on the corresponding emotional intensity label,and the division of emotional roles can better assist the analysis of individual instantaneous emotional changes.

关 键 词:机器学习 瞬时情感强度 情感角色划分 高低情感代入 情感强度标签 情感强度回归 脑电信号 情感计算 情感强度变化 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象