检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙祥龙 李卫萍 丁明君 王玉明 孙鹏 SUN Xianglong;LI Weiping;DING Mingjun;WANG Yuming;SUN Peng(Hangzhou Zhenshan Information Technology Co.,Ltd.,Hangzhou,Zhejiang 310012,China;Rizhao Natural Resources and Planning Bureau,Rizhao,Shandong 276800,China)
机构地区:[1]杭州臻善信息技术有限公司,浙江杭州310012 [2]日照市自然资源和规划局,山东日照276800
出 处:《测绘标准化》2025年第1期139-143,共5页Standardization of Surveying and Mapping
摘 要:传统的湿地信息提取主要采用外业调查和目视解译方法,存在耗时、费力且成本高的问题。近年来,利用遥感影像进行湿地信息提取成为研究的热点,但低分辨率遥感影像精度难以满足实际需求,高分辨率影像往往成本较高。本文基于高分二号(GF-2)卫星影像数据,建立湿地类型分类体系,采用面向对象分类方法提取南京市长江区域的湿地信息。结果表明,面向对象分类方法对研究区GF-2影像进行湿地信息提取的总体精度为90.86%,Kappa系数为0.904,分类精度较高,能够满足变化监测的要求,该研究结果可为利用GF-2卫星影像精准监测湿地变化提供支持。The traditional wetland information extraction mainly use field surveys and visual interpretation,it has the problems of time-consuming,labor-intensive,and high cost.In recent years,using remote sensing images to extract wetland information has become a hot topic,while the accuracy from low-resolution remote sensing images can't meet the practical requirements,and high-resolution images are typically expensive.Therefore,this paper constructs a wetland classification system based on Gaofen-2(GF-2)satellite images,and uses object-oriented classification method to extract wetland information in the Yangtze River region in Nanjing City.The results show that the object-oriented classification method can get good accuracy when extracing wetland information from GF-2 satellite images,the overall accuracy is 90.86%,and the Kappa coefficient is 0.904,which can meet the change monitoring requirements.This study can provide great support for accurate monitoring of wetland changes using GF-2 satellite images.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13