检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘永强[1] 杨志辉[2] 唐云[2] 严正[3] 倪以信[3] 吴复立[3]
机构地区:[1]华南理工大学电力学院,广东省广州市510640 [2]清华大学数学系,北京市100084 [3]香港大学电机与电子工程系
出 处:《电力系统自动化》2003年第1期5-10,共6页Automation of Electric Power Systems
基 金:国家重点基础研究专项经费资助项目 (G19980 2 0 30 7;G19980 2 0 30 8)
摘 要:在双时间尺度系统中 ,慢流形的存在性及其基本特征的研究为系统时间尺度分解及系统降阶提供了理论基础。但对于多时间尺度的电力系统模型降阶问题而言 ,还必须研究快流形的存在性及其基本特征 ,以给出固定系统慢动态的降阶条件。文中研究了慢流形的基本理论及略去快动态的条件 ,提出了系统快流形这一不变流形的存在性定理 ,并在系统初值落在快流形的条件下 ,实现系统的精确降阶。文中所得到的结果不仅为电力系统降阶奠定了理论基础 ,而且可以对电力系统的短期失稳与中。In a two-time scale power system, the theoretical foundation for time-scale differentiation and model reduction can be established through the study on existence and fundamental characteristics of slow manifolds. But for a multi-time scale power system, existence and fundamental characteristics of fast manifolds must also be studied in order to obtain the model reduction condition of fixing slow dynamics. The basic theory of slow manifolds and the conditions for omitting fast dynamics are studied. A theorem on existence of fast manifolds is established, and it is proved that accurate model reduction can be realized if the initial point of the system falls into the fast manifolds. Conclusions of this paper not only lay the theoretical foundation of model reduction of power systems, but also can be used to explain short-term, mid-term and long-term instability of power systems.
关 键 词:电力系统 多时间尺度模型 模型降阶 稳定性 慢流形 快流形
分 类 号:TM712[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229