检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国西南电子技术研究所,四川成都610036 [2]电子科技大学,四川成都610054
出 处:《电讯技术》2003年第1期63-67,87,共6页Telecommunication Engineering
摘 要:马尔可夫随机场 (MRF)可以很好地描述空间连续性 ,选择适当的邻域系统 ,能对图像的结构特征建模。利用以能量函数表示的联合概率分布 ,可以使用优化算法进行参数估计。高斯MRF能够准确、简洁地表示图像的纹理 ,而且具有线性特性 ,计算方便。本文回顾了在SAR图像处理中使用的MRF模型 ,详细说明了其中 2种在图像复原及分割中的应用。By Selecting a proper neighborhood system and using the ability of Markov Random Field (MRF) to describe spatial dependence (continuity), MRF can be used to model the structural and textural behavior of images. Using the joint probability distribution in terms of an energy function, estimation of parameters can be performed by the stochastic relaxation algorithm. Gaussian MRF can represent a range of textures accurately and compactly and can be analysed tractably. In this paper,several MRF models are introduced, and the application of two models to restoration and segmentation of SAR images are presented in detail.
关 键 词:SAR图像处理 马尔可夫随机场 模拟退火 流域变换 四叉树分解
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222