检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张再跃
出 处:《Journal of Computer Science & Technology》2001年第1期77-85,共9页计算机科学技术学报(英文版)
基 金:This reserch is supported by the National Natural Science Foundation of China (No.19971090).
摘 要:In the study of cappable and noncappable properties of the recursively enumerable (r.e.) degrees, Lempp suggested a conjecture which asserts that for all r.e. degrees a and b, if a ≮ b then there exists an r.e. degree c such that c ≮ a and c ≮ b and c is cappable. We shall prove in this paper that this conjecture holds under the condition that a is high. Working below a high r.e. degree h, we show that for any r.e. degree b with h ≮ b, there exist r.e. degrees aO and al such that a0, al ≮ b, aO,a1 ≮ h, and aO and a1 form a minimal pair.In the study of cappable and noncappable properties of the recursively enumerable (r.e.) degrees, Lempp suggested a conjecture which asserts that for all r.e. degrees a and b, if a ≮ b then there exists an r.e. degree c such that c ≮ a and c ≮ b and c is cappable. We shall prove in this paper that this conjecture holds under the condition that a is high. Working below a high r.e. degree h, we show that for any r.e. degree b with h ≮ b, there exist r.e. degrees aO and al such that a0, al ≮ b, aO,a1 ≮ h, and aO and a1 form a minimal pair.
关 键 词:recursively enumerable degree minimal pair
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222