检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北师范大学数学与信息科学学院,河北石家庄050016 [2]沧州师范专科学校数学系,河北沧州061000
出 处:《河北师范大学学报(自然科学版)》2003年第2期123-126,共4页Journal of Hebei Normal University:Natural Science
基 金:河北省自然科学基金资助项目 ( 10 10 92 );河北师范大学青年基金资助项目
摘 要:设λKv 是λ重v点完全图 ,G是无孤立点的有限简单图 .将G设计 (G填充 )记作 (v ,G ,λ)GD( (v ,G ,λ)PD)是指一个序偶 (X ,B) ,其中X是完全图Kv 的顶点集 ,B是Kv 中同构于G的子图 (区组 )的集合 ,使得Kv 中每条边恰好 (至多 )出现在B的λ个区组中 .讨论了 3类 7点 7边图Gi(i=1,2 ,3)的图设计及最优填充问题 ,并给出了 (v ,Gi,1)GD及 (v ,Gi,1)OPD (i=1,2 ,3)存在的谱 .Let λK v be the complete multigraph with v vertices,G be a finite simple graph.A Gdesign(Gpacking design) of λK v,denoted by (v,G,λ)GD ((v,G,λ)PD) is a pair (X,B),where X is the vertex set of K v and B is a collection of subgraphs of K v,called blocks,such that each block is isomorphic to G and any two distinct vertices in K v are joined in exactly (at most) λ blocks of B.The G i-designs and G i-optimal packings is discussed,where G i(i=1,2,3) has seven vertices and seven edges,and solved the existence spectrum of (v,G i,1)GD and (v,G i,1)OPD,i=1,2,3.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.67.167