检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高超[1] 沈艳霞[1] 杨雄飞[1] 潘庭龙[1]
机构地区:[1]江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
出 处:《控制工程》2016年第3期346-352,共7页Control Engineering of China
基 金:国家自然科学基金项目(61174032);国家自然科学基金项目(61104183);高等学校博士学科点专项科研基金(20130093110011)
摘 要:气温波动是影响短期电力负荷预测准确率的主要因素之一,为了提高预测精度,将气温因素引入一种新型的非线性自回归模型中,构建一种基于气温因素的非线性自回归短期电力负荷预测模型,并提出该模型的实验定阶方法。以气温作为模型的外部输入量,基于Weierstrass定理推导了该模型的表达式,采用最小二乘法估计该模型的参数,根据所提出的实验定阶方法对模型进行定阶。对实际电力负荷样本进行预测,结果验证了模型实验定阶方法的可行性,表明该负荷预测模型预测精度较高,可应用于负荷短期预测之中。Temperature fluctuation is one of the main factors affecting the accuracy of short-time load forecasting. To obtain a precise short-term load forecasting, in this paper, the temperature factor is introduced to a new nonlinear auto-regressive model, a nonlinear auto-regressive model for short-term load forecasting based on temperature factor is built and a experimenting order determination method is proposed for the model. Using temperature factor as the external input, this model is deduced based on Weierstrass theorem, the parameters of this model are identified using the least square algorithm, the order of the model is determined based on the proposed experimenting order determination method. Making load forecasting based on actual load samples, the obtained results verify the feasibility of the experiment order determination method of the model and show that the proposed model has a good forecasting capacity and can be applied to the short-time load forecasting.
关 键 词:短期电力负荷预测 气温因素 非线性自回归模型 最小二乘法 实验定阶
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.60.240