检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京师范大学资源与环境科学系,北京100875
出 处:《资源科学》2003年第1期35-41,共7页Resources Science
基 金:国家自然科学基金项目 (编号 :40 1 71 0 59);国家杰出青年基金项目(编号 :4972 51 0 3)共同资助
摘 要:降雨侵蚀力反映气候因素 -降雨对土壤侵蚀的潜在作用能力 ,由于次降雨资料难以获得 ,一般利用气象站整编降雨资料评估计算降雨侵蚀力。对年平均雨量、月平均雨量、逐年年雨量、逐年月雨量及逐年日雨量等 5种代表性雨量资料估算降雨侵蚀力的结果进行对比分析 ,结果表明以日雨量计算多年平均侵蚀力的精度最高 ,而在 4种采用月或年雨量的模型中尽管以逐年月雨量模型表现相对最好 ,但这 4种模型之间差别不明显。同时在降雨量较丰富地区 。Rainfall erosivity shows the potential ability of the soil loss caused by rainfall and it is very important for predicting soil loss quantitatively. Five models to estimate rainfall erosivity using average annual rainfall、average monthly rainfall、annual rainfall、monthly rainfall or daily rainfall were compared from the data of 66 weather stations in China. The daily rainfall erosivity model was obviously better than the other four models by using annual or monthly rainfall. For daily rainfall erosivity model,the average relative error of estimating the average annual rainfall erosivity was 4 2% and the maximal relative error was 24 1%. With the set of recommended parameter values of the model,the average relative error using estimated parameter values increased to 17 9% and the maximal relative error decreased to 87 1%. For four models using annual or monthly rainfall, the average relative error estimating average annual rainfall erosivity was from 32 1% to 46 3% and the maximal relative error was from 235 4% to 569 2%. Moreover, the average monthly rainfall model was best among the 4 models. The performance of each model was better in the region where the rainfall was abundant than where not.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200