检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄冠华[1] ZHAN Hong-bin 叶自桐[3]
机构地区:[1]中国农业大学水利与土木工程学院,北京100083 [2]Dept.of Geology&Geophysics,Texas A&M University [3]武汉大学水利水电工程学院,湖北武汉430072
出 处:《水科学进展》2003年第2期236-241,共6页Advances in Water Science
基 金:国家自然科学基金资助项目(59879028);霍英东青年教师基金资助项目(71027)~~
摘 要:水力传导度是描述孔隙介质物理特性的重要参数,水力传导度的空间变异性直接影响到水分与溶质在介质中的运移状况。由于基于随机理论的方法难于描述具有多重变异尺度的水力传导度的空间变异性,使得基于分形理论的方法得到了较快发展和应用。详细介绍并评述了分形理论和方法的基本特征及研究进展,水力传导度的空间变异分形与弥散尺度效应的关系及其对溶质运移的影响。The hydraulic conductivity is one of the most important parameters for describing the physical characteristics of porous media.The spatial variability of hydraulic conductivity has an important effect on water movement and solute transport in porous media.The methods based on spatial random fields fail to describe the spatial variation of hydraulic conductivity with multiscales.Therefore a new method is developed in recent years on the basis of fractal theory, with which fractional Brown motion (fBm) and fractal Levy motion (fLm) are applied to study the variability of hydraulic conductivity without permanent integral scale.The main objective of this paper is to review the methods based on the fractal theory, and to analyze the relationship between the spatial variability of hydraulic conductivity and scaleeffect of solute dispersivity and its application to describe water movement and solute transport.
分 类 号:P641.2[天文地球—地质矿产勘探] G353.11[天文地球—地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117