检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:修建娟[1,2] 何友 王国宏[1] 夏明革[1,2]
机构地区:[1]海军航空工程学院电子工程系 [2]海军工程大学兵器工程系,湖北武汉430033
出 处:《系统工程与电子技术》2003年第3期280-283,共4页Systems Engineering and Electronics
基 金:全国优秀博士论文作者专项基金(2000036);高校骨干教师基金(3240) 资助课题
摘 要:多站测向交叉定位是无源定位方法中运用较多的一种,但该方法在复杂环境下会产生虚假定位点,而虚假定位点的快速、准确排除一直是无源定位研究中的难点,国内外许多学者始终致力于该问题的研究,提出了多种解决方法,像最小距离法、最大似然算法、拉格朗日松弛算法等,但它们或数据正确相关率较低,或计算量较大,不适用于实时处理。为此,采用了一种对目标进行方位关联的新方法,即先利用一定的准则进行方位粗关联,排除掉一部分虚假定位点,减少计算量;在此基础上再进行方位细关联,找出最有可能来自目标的方位组合。与现有算法相比,该方法可快速、准确地排除虚假定位点。仿真结果表明,利用该方法可较好地对多目标进行定位和跟踪,且计算量适中。In all methods of passive location to get information of targets,passive cross location of multiple sensors is very popular. However this method will produce a lot of false intersection points in dense environments. Eliminating these false intersection points correctly and quickly is a key technique in passive location. Many researchers have been engaged in studying this problem and presented many solution,such as the least distance method,the maximum likelihood method,the Lagrangian relaxation algorithm. But some of these methods have a low correct association rate,or a high computation burden. In this paper,a new method is adopted to associate the bearing measurements of different passive sensors. This method firstly uses a rule to eliminate some false intersection points,so the computation burden is decreased. Then,another algorithm is used to associate the bearing measurements. Compared with the classical methods,this method can eliminate false intersection points more quickly and correctly. Simulation results show that using the method proposed passive sensors can track multiple targets at the same time,and the computation burden is moderate.
关 键 词:被动传感器 交叉定位 数据互联 多目标跟踪 无源定位方法
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15