The Progress of a Microbeam Facility in the Institute of Plasma Physics  

The Progress of a Microbeam Facility in the Institute of Plasma Physics

在线阅读下载全文

作  者:吴瑜 张束清 袁航 余增亮 张俊 胡素华 李军 王旭飞 陈斌 时钟涛 王绍虎 

机构地区:[1]Institute of Plasma Physics,Chinese Academy of Sciences

出  处:《Plasma Science and Technology》2003年第2期1761-1764,共4页等离子体科学和技术(英文版)

基  金:The project supported by the Natural Science Foundation Committee in Anhui Province, China (No. 01046201)

摘  要:The progress of a microbeam facility in the Institute of Plasma Physics was discussed in this paper. This kind of equipment can supply single-particle beam which may be implanted into cells in micrometer-radius and measured by a new outstanding detector among global microbeam systems. Measurements by some plain targets showed that the highest current after the accelerator tube can be larger than 20 /μA, the H_2^+ current before the second bending magnet is near 0.9 /μA, the current after the second bending magnet is near 0.8 μA, and the current of the beam line (after a 2-mm diameter aperture) is near 0.25 nA which is enough for the single-particle microbeam experiment. It took scientists 3 months to do their microbeam experiment after setting up the accelerator beam line and get the microbeam from this equipment. Two pre-collimators were installed between the 2-mm diameter aperture and the collimator to survey the beam. Tracks on the CR39 film etched in the solution of NaOH showed that the beam can go through the collimator including a 10 μm diameter aperture and the 3.5 μm thick vacuum sealing film (Mylar). A new method, which is called optimization of the beam quality, was put forward in this paper, in order to get smaller diameter of beam-spot in microbeam system.The progress of a microbeam facility in the Institute of Plasma Physics was discussed in this paper. This kind of equipment can supply single-particle beam which may be implanted into cells in micrometer-radius and measured by a new outstanding detector among global microbeam systems. Measurements by some plain targets showed that the highest current after the accelerator tube can be larger than 20 /μA, the H_2^+ current before the second bending magnet is near 0.9 /μA, the current after the second bending magnet is near 0.8 μA, and the current of the beam line (after a 2-mm diameter aperture) is near 0.25 nA which is enough for the single-particle microbeam experiment. It took scientists 3 months to do their microbeam experiment after setting up the accelerator beam line and get the microbeam from this equipment. Two pre-collimators were installed between the 2-mm diameter aperture and the collimator to survey the beam. Tracks on the CR39 film etched in the solution of NaOH showed that the beam can go through the collimator including a 10 μm diameter aperture and the 3.5 μm thick vacuum sealing film (Mylar). A new method, which is called optimization of the beam quality, was put forward in this paper, in order to get smaller diameter of beam-spot in microbeam system.

关 键 词:SINGLE-PARTICLE MICROBEAM beam spot PRE-DETECTION 

分 类 号:O539[理学—等离子体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象