检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]鲁东大学信息与电气工程学院,烟台264025 [2]山东大学计算机科学与技术学院,济南250100
出 处:《密码学报》2014年第5期481-490,共10页Journal of Cryptologic Research
基 金:国家自然科学基金项目(61173139);山东省自然科学基金重点项目(ZR2011FZ005);教育部博士点基金(20110131110027)
摘 要:理性安全多方计算指的是带有理性参与者的安全多方计算.它是博弈论和安全多方计算的一个综合,利用博弈论中的一些概念和方法解决安全多方计算中的某些问题.不同于传统安全计算中的参与者或敌手,理性参与者以获取最大收益为行为动机,因而在适用背景、安全模型、协议属性甚至概念引入等方面具有丰富的研究内容.理性参与者的概念由Halpern和Teague在STOC 2004会议中首先提出并使用.他们主要研究了Shamir秘密分享方案中引入理性参与者的情形,并提出了一个随机理性(3,3)Shamir秘密分享方案,给出了关于理性多方函数计算的若干公开问题,对理性安全多方计算研究起到指导性作用.理性安全多方计算主要考虑参与者的动机,刻画理性参与者效用函数,研究在各种条件下参与者如何选择策略达到均衡,本文旨在介绍理性安全多方计算的发展状况及典型成果,并提出一些需进一步研究的问题.文章主要讨论理性安全多方秘密分享和理性安全多方函数值计算方面的内容,这是理性安全多方计算领域中最令人关注的部分.另外,由于传统安全两方函数计算无法达到公平性,因此经常忽略该性质.理性两方计算中却可以实现公平性,公平性研究因而是理性两方计算中具有特色的内容,本文对此也做一简要介绍.Rational secure multi-party computation(RSMPC) means secure multi-party computation(SMPC) in the presence of rational parties. It is a combination of game theory and SMPC, solving some problems inSMPC by utilizing notions and methods in game theory. Rational parties, differing from parties or adversaries in traditional SMPC, have incentives to maximize their utilities. Therefore, there are abundant contents to research in RSMPC, such as applicable backgrounds, security models, protocol attributions and even new concepts etc. The notion of rational parties was firstly proposed and used by Halpern and Teague in STOC 2004. They mainly discuss the scenario where rational parties are introduced to Shamir's secret share scheme. They proposed a random rational(3, 3) Shamir's secret share scheme and also represent some open problems, which takes guidance for RSMPC. RSMPC mainly considers parties' incentives, describes utility definitions and studies how to choose proper strategies in order to reach equilibriums under various conditions. This paper aims at introducing the development situation and typical results about RSMPC and proposing some problems needed for further investigation. This paper stresses on the contents of rational secret sharing schemes and rational secure multi-party function evaluation, which are the most interesting parts in RSMPC. In addition, the property of fairness is often neglected in traditional secure two-party computation since it cannot be guaranteed there. However, fairness can be achieved in rational secure two-party computation. Therefore, fairness in rational secure two-party function evaluation is a particularly interesting problem and is also discussed briefly here.
关 键 词:博弈论 纳什均衡 理性秘密分享 理性安全多方计算
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3