A Remark on Contact Hypersurfaces of a Complex Hyperbolic Space  

A Remark on Contact Hypersurfaces of a Complex Hyperbolic Space

在线阅读下载全文

作  者:许志才 

机构地区:[1] Huainan Mining Institute,

出  处:《Chinese Quarterly Journal of Mathematics》1993年第3期30-34,共5页数学季刊(英文版)

摘  要:A differentiable manifold is said to be contact if it admits a linear functional f on the tangent bundle satisfying f ∧(df)^(M-1)≠0.This remark obtain the following the classification:Let M be a complete connected contact hyper-surface of CH^2(-4),then M is congruent to one of the following: (i)A tube of radius r>0 around a totally geodesic,totally real hyperbolic space form H^2(-1); (ii)A tube of radius r>0 around a totally geodesic complex hyperbolic space form CH^1(-4); (iii)A geodesic hypersphere of radius r>0,or (iv)A horosphere.

关 键 词:differentiable manifold tangent bundle. 

分 类 号:O174.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象