多值因果图的推理算法研究  被引量:7

Reasoning Algorithm in Multi-Value Causality Diagram

在线阅读下载全文

作  者:樊兴华[1] 张勤[2] 孙茂松[1] 黄席樾[2] 

机构地区:[1]清华大学智能技术与系统国家重点实验室,北京100084 [2]重庆大学自动化学院,重庆400044

出  处:《计算机学报》2003年第3期310-322,共13页Chinese Journal of Computers

基  金:国家"九七三"重点基础研究发展规划项目 (G19980 3 0 5 0 7);中国教育部博士点基金 ( 990 61116);重庆市科委攻关项目 ( 5 990 )

摘  要:针对多值因果图存在的两个困难 :(1)不严格满足概率论 ;(2 )将其用于实际问题时 ,推理结果可能出现错误 ,提出了一种基于因果影响可能性分配的推理算法 .该算法将多值因果图的推理分成 3个阶段 ,首先对多值因果图进行补充定义 ,使多值因果图能够兼容单值因果图 ;接着将多值因果图转化为单值因果图进行概率计算 ;最后对多值因果图进行可能性计算 ,将单值因果图计算得到的概率按多值因果图计算得到的可能性进行分配 .以核电站二回路系统中蒸汽发生器故障诊断因果图为例 ,展示了该算法推理计算的全过程 .实例表明 ,该算法能够有效地克服多值因果图存在的困难 ,其推理过程严谨 ,计算结果符合实际情况 .在前面提出的推理算法基础上 ,针对其不能处理模糊情况的局限性 ,提出了一种模糊推理算法 .该算法对多值因果图进行了模糊扩展定义 ,在读数变量和事件变量之间建立了用于表达模糊知识的模糊对应关系 ,在事件变量上定义了一个等价的虚拟模糊状态 ,使读数变量取值对应一个模糊状态 ,把读数的模糊推理转化为对应模糊状态的非模糊推理 .通过本文的工作 。The multi-value causality diagram developed on the belief network does not satisfy probability theory rigorous, and the inference result may be error when it is used in practice. In order to overcome these difficulties, this paper presents a reasoning algorithm based on possibility allocation. The reasoning process is separated into 3 stages. Firstly, the multi-value causality diagram is supplementally defined. It is compatible with a single-value causality diagram. Secondly, it transforms a multi-value causality diagram to a single-value causality diagram that is used to compute the probability; Thirdly, it allocate the probability to every state according to its possibility value that is computed in multi-value causality diagram. An example about fault diagnosis of a steam generator in the nuclear power plant demonstrates that this algorithm could efficiently overcome the difficulties in multi-value diagram, the reasoning process is rigorous, and the result coincides with the reality. Aimed to the former algorithm's deficiency, a fuzzy reasoning algorithm is presented in this paper, which extended the definition of the multi-value causality diagram with fuzzy, built the fuzzy mapping relation between the event variable and the reader variable to represent the fuzzy knowledge, and defined a suppositional equivalent fuzzy state of event variable that maps the reader variable to a fuzzy state and transforms the fuzzy reasoning of a reader variable to the non-fuzzy reasoning of a fuzzy state. Now, the causality diagram has become a hybrid probability knowledge representation and reasoning model, which can deal with discrete and continuous variables and represent the fuzzy knowledge under uncertainty.

关 键 词:不确定性推理 多值因果图 可能性分配 推理算法 模糊知识表达 信度网 人工智能 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象