可修正跟踪精度的低成本全天候太阳跟踪控制系统研制  被引量:3

Development of inexpensive all-weather solar tracking control system for amendable tracking precision

在线阅读下载全文

作  者:张学刚[1] 谢永春[1] 谭兴强[1] 

机构地区:[1]攀枝花学院机械工程学院,攀枝花617000

出  处:《农业工程学报》2015年第24期59-63,共5页Transactions of the Chinese Society of Agricultural Engineering

基  金:太阳能技术集成及应用推广四川省高校重点实验室资金项目资助(TYN2015-02)

摘  要:为了降低太阳跟踪系统的成本和复杂程度,以模拟电路及光电转换原理为基础,研制了一种跟踪精度可调整的全天候太阳跟踪控制系统和T-L型太阳方位探测器,并通过光斑检测试验,对该系统的跟踪性能进行了分析,试验方法是将底部带小孔的一次性纸杯粘贴在带无数同心圆的纸上,将纸固定在双轴跟踪支架上,进而观察光斑在同心圆上的位置随时间的变化。研究结果表明:该系统的跟踪精度与太阳辐射强度有关,太阳辐射强度越大跟踪精度越高,太阳辐射强度越小跟踪精度越差,一天中的最小跟踪精度可达0.14°。该系统适合于对跟踪精度要求不是特别苛刻,并且对跟踪控制系统有廉价要求的场合,为太阳跟踪控制系统的普及奠定基础。To reduce costs and complexity of solar tracking system, a simple solar tracking control system and T-L type sun origination detector are developed by analog circuit and photoelectric conversion principle. The tracking system is composed of bridge circuits and amplification circuits; it has functions of manually adjusted tracking accuracy and manually working. It is used to drive 12V DC gear motor, and it can be used for single-axis tracking, can also be used for dual-axis tracking. The tracking system only requires six common types of electronic components, which costs no more than 10 RMB. In order to reduce external environment impact on tracking performance of the system, a T-L-type orientation detector was designed for the tracking system. The L-type shading plate of the orientation detector was fixed to the L-type clapboard, therefore, the cross-section the shading plate and the clapboard showed a T-shape. Then, the clapboard was fixed to the substrate, and two sides of the clapboard were installed respectively with four photoresistors. Two were used to control movement of east-west direction; the other two were used to control movement of north-south direction. In addition, back of the substrate was installed with two photoresistors. Also, it was paralleled respectively with the two photoresistors which were used to control the movement of east-west direction. One of the photoresistor was used for controlling energy concentrator returnorientin a next day; one of the photoresistor was used for balance another photoresistor behind the substrate. When using the system, the orientation detector was installed on a plane which paralleled to energy concentrator so that the orientation detector always synchronized to movement and energy concentrator. To test performance of the tracking system, in this paper, the tracking performance of the system was analyzed by light spot detection experiments. The method of the experiment was that an inverted paper cup was attached to a piece of paper. A hole was drilled at the g

关 键 词:太阳能 跟踪 控制系统 光敏电阻 方位探测器 精度检测 

分 类 号:TK513.4[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象