检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学材料科学与工程学院,上海200030
出 处:《磁性材料及器件》2003年第3期37-41,共5页Journal of Magnetic Materials and Devices
摘 要:锰锌铁氧体纳米粉末具有很强的活性,其烧结特性对于烧结工艺参数十分敏感。采用纳米粉末生产软磁铁氧体可以明显降低烧结温度,缩短烧结时间,有利于铁氧体化学成分和显微组织的控制,进而改善铁氧体的磁性能。研究表明铁氧体纳米粉末在700℃左右烧结后的密度已接近理论值,纳米粉体对加热速度十分敏感,而且由于纳米粉体比表面积大,容易发生氧化,因此烧结气氛必须严格控制,采用氮气气氛,并调节平衡氧分压。本文结合粉末基本的烧结理论以及纳米粉体特性,对MnZn铁氧体纳米粉末的烧结特性进行分析。Because of the superfine grain, nanosized MnZn ferrite is of strong reactivity, and the sintering characteristic of powders is very sensitive to the sintering process parameters. MnZn ferrite can be prepared from nanosized powders by decreasing the sintering temperature, and reducing the sintering time, which is advantageous to the control of the composition and microstructure, and consequently to the improvement of magnetic properties . It shows that nanosized MnZn ferrite powders can be sintered to nearly theoretical density at temperatures as low as 700℃. However, the nanosized powders are sensitive to the heating rate. Due to the high specific surface area of nanosized powders, they are very susceptible to oxidation. So the sintering atmosphere must be controlled strictly. The sintering should be in a nitrogen atmosphere and the equilibrium oxygen pressure is changed constantly. In this paper, according to the basic sintering theory of powders and the sintering characteristic of the nanosized powders, the sintering characteristic of the nanosized MnZn ferrite is analyzed.
分 类 号:TM277.1[一般工业技术—材料科学与工程] TF124.5[电气工程—电工理论与新技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7