检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学图像处理与模式识别研究所,上海200030
出 处:《计算机工程与应用》2003年第21期17-18,174,共3页Computer Engineering and Applications
基 金:上海市科学技术发展基金会资助(编号:015115022)
摘 要:多姿态人脸识别在很多领域具有重要的应用价值。基于多姿态人脸图像及Gabor小波特点选取离散化参数,对人脸图像进行Gabor小波变换;然后采用两步降维法对变换系数进行降维,基于降维后的Gabor特征表示实现人脸识别。实验将互不相交的两个样本集依次作为训练集和测试集,验证了该方法在人脸识别中对于不同姿态和表情的有效性及鲁棒性。Pose-varied face recognition is important in many research areas.Based on the analysis of Gabor wavelet and pose -varied face images,discrete Gabor wavelet is applied to face images with parameters deliberately selected.A method named two step dimension reduction is used to reduce the dimension of Gabor feature vector.Based on the reduced Gabor wavelet representation of face images and a certain distance measure,two groups of images,which share no intersection,are used as train group and test group in turn to test the robustness of Gabor wavelet representation to varied poses and deferent facial expressions.The result shows that high recognition rate for pose-varied face recognition can be obtained based on this Gabor wavelet features.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.254