基于多传感器数据融合发电机参数的在线估计  被引量:1

Real-time parameter identification for generator based on multi-sensors

在线阅读下载全文

作  者:吕锋[1] 孙杨[2] 韩提文[1] 

机构地区:[1]河北师范大学电子系,河北石家庄050031 [2]河北省电力公司,河北石家庄050021

出  处:《中南工业大学学报》2003年第4期409-412,共4页Journal of Central South University of Technology(Natural Science)

基  金:国家自然科学基金资助项目(60274059);河北师范大学基金资助项目(L200207)

摘  要:发电机实际运行中,由于受外界环境(如电磁波)的干扰以及传感器老化等因素的影响,传感器容易发生参数型故障.为了有效地在线估计发电机工作参数,利用多传感器的冗余和强跟踪滤波器,设计了基于发电机参数数学模型的在线估计器.该估计器具有自然的并行结构,设计参数和计算量较少,尤其适于工程应用.由于失效传感器被有效剔除,该估计器对失效传感器具有很强的鲁棒性.计算机仿真结果证明了该算法的有效性.Sensors of generators, subject to sensor aging and environmental electromagnetic disturbances, are prone to parameter faults in practical engineering. To cope with such problems, an online estimator based on strong tracking filter (STF) and multiple sensor fusion is proposed. In the estimator, nonlinear parameter model of generator can be dealt with by STF while redundancy of multiple sensors can be used to separate normal and abnormal sensors. Because of its natural parallel structure, few design parameters and low computation burden, the estimator is very suitable for engineering applications. Furthermore, it has strong robustness for abnormal sensors, which are easily separated and rejected via multiple sensor technique. The simulation shows its effectiveness.

关 键 词:传感器 数据融合 发电机 参数估计 

分 类 号:TM311[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象