检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Acta Mathematica Scientia》2003年第3期289-296,共8页数学物理学报(B辑英文版)
基 金:the Nature Science Foundation of China(19901009),Nature Science oundation of Guangdong Province(970472;000463)
摘 要:The purpose of this paper is to present some dual properties of dual comodule. It turns out that dual comodule has universal property (cf.Theorem 2). Since (( )*,()°) is an adjoint pair (cf.Theorem 3), some nice properties of functor ( )° are obtained. Finally Theoram 4 provides that the cotensor product is the dual of the tensor product by (M (?)A N)°≌M°□A°N°. Moreover, the result Hom(M,JV)≌ComA°(N°,M°) is proved for finite related modules M, N over a reflexive algebra A.The purpose of this paper is to present some dual properties of dual comodule. It turns out that dual comodule has universal property (cf.Theorem 2). Since (( )*,()°) is an adjoint pair (cf.Theorem 3), some nice properties of functor ( )° are obtained. Finally Theoram 4 provides that the cotensor product is the dual of the tensor product by (M (?)A N)°≌M°□A°N°. Moreover, the result Hom(M,JV)≌ComA°(N°,M°) is proved for finite related modules M, N over a reflexive algebra A.
关 键 词:Universal dual comodule Hopf algebras cotensor product adjoint pair
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229