检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周传光[1] 潘吉铮[2] 许庆国[1] 赵文[1] 钱宇[2]
机构地区:[1]青岛科技大学化工学院,山东青岛266042 [2]华南理工大学化工学院,广东广州510640
出 处:《石油化工》2003年第7期588-592,共5页Petrochemical Technology
摘 要:对基于反馈神经网络的化工过程动态数据校正方法进行了研究,实现了自反馈增益的网络结构和动态反向传播算法。连续搅拌槽反应器实例的应用结果表明,反馈网络能快速、有效地校正动态过程测量数据。该方法仅依赖于历史测量数据,无需掌握过程本身的精确模型及测量噪声的参数,克服了应用过程机理模型对化工动态过程进行数据校正的局限性。Chemical processes are highly non-linear systems exhibiting complex time-dependent behavior.Modeling of these dynamics using first principle is not always possible,which brings difficulties to process data rectification.An alternative dynamic data rectification method based on recurrent neural networks(RNN)was studied in detail.We demonstrated the application of modified RNN with self-feedback gains to rectify the simulated measurements obtained from dynamic continuous stirred tank reactor(CSTR).The results indicated that RNN could be trained to generate excellent dynamic process models and rectify dynamic measurements fast and efficiently.In contrast to conventional nonlinear programming and Kalman filter,RNN-based method was independent of rigorous mechanism models of process and information about noise parameters,relying only upon historical measurements.RNN offered a promising alternative method for dynamic process data rectification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70