关于乘法分拆数的上界  被引量:5

在线阅读下载全文

作  者:陈文立[1] 

机构地区:[1]西南师范大学数学系,重庆630715

出  处:《科学通报》1992年第11期964-967,共4页Chinese Science Bulletin

摘  要:设f(n)是自然数n(>1)的乘法分拆数,且令f(1)=1。其上界的估值是一个引起人们重视的课题。1983年,Hughes与Shallit证明了并提出两个猜想:1.f(n)≤n;2.f(n)≤n/logn,n≠144。当年,Canfield、Erds与Pomerance证明了f(n)的最大阶为n·L(n)^(-1+0(1),其中L(n)=exp{logn·log_3n/log_2n}(log_kn表示n的k重对数),实际上证明了当n充分大时猜想2~*成立。1986年。

关 键 词:乘法分拆数 上界 加法分拆数 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象