检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北方交通大学交通运输学院自动化系统研究所,北京100044 [2]中央民族大学,北京100081
出 处:《北京邮电大学学报》2003年第3期32-36,共5页Journal of Beijing University of Posts and Telecommunications
摘 要:序列模式挖掘算法多是利用了关联规则挖掘中的Apriori特性.利用灰关联方法对原始序列进行净化处理,从而减少挖掘算法中的噪声数据.其理论依据在于,如果一个序列是频繁的,那么该序列的时间间隔也必然是频繁的.利用了灰关联分析方法找出两个项之间的频繁时间间隔,再利用该间隔扫描事务序列数据库,从而最终找出频繁序列.Most of the Sequence Pattern Mining (SPM)algorithm are using the Apriori characteristic of Association Rule Mining (ARM). The paper here mostly emphasises purifying the original sequence by making use of Grey Association(GA) method to reduce the noise data during the process of mining algorithm. The academic evidence here is that if a sequence was frequent then the time intervals between every two items included in the sequence were also frequent. Therefore, firstly the paper makes use of GA method to find the frequent time interval between two items in the sequence, then according to the frequent time interval scans the affair sequence database and finally finds out the frequent sequence.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28