Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries  被引量:5

Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries

在线阅读下载全文

作  者:Yunchuan Tu Dehui Deng Xinhe Bao 

机构地区:[1]State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences [2]Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University [3]University of Chinese Academy of Sciences

出  处:《Journal of Energy Chemistry》2016年第6期957-966,共10页能源化学(英文版)

基  金:supported by the Ministry of Science and Technology of China(Nos.2016YFA0204100 and 2016YFA0200200);the National Natural Science Foundation of China(Nos.21321002,21573220 and 21303191);the strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA09030100)

摘  要:Rechargeable lithium-oxygen (Li–O2) batteries have been considered as the most promising candidates for energy storage and conversion devices because of their ultra high energy density. Until now, the critical scientific challenges facing Li–O2batteries are the absence of advanced electrode architectures and highly efficient electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which seriously hinder the commercialization of this technology. In the last few years, a number of strategies have been devoted to exploring new catalysts with novel structures to enhance the battery performance. Among various of oxygen electrode catalysts, carbon-based materials have triggered tremendous attention as suitable cathode catalysts for Li–O2batteries due to the reasonable structures and the balance of catalytic activity, durability and cost. In this review, we summarize the recent advances and basic understandings related to the carbon-based oxygen electrode catalytic materials, including nanostructured carbon materials (one-dimensional (1D) carbon nanotubes and carbon nanofibers, 2D graphene nanosheets, 3D hierarchical architectures and their doped structures), and metal/metal oxide-nanocarbon hybrid materials (nanocarbon supporting metal/metal oxide and nanocarbon encapsulating metal/metal oxide). Finally, several key points and research directions of the future design for highly efficient catalysts for practical Li–O2batteries are proposed based on the fundamental understandings and achievements of this battery field. © 2016 Science PressRechargeable lithium-oxygen (Li–O2) batteries have been considered as the most promising candidates for energy storage and conversion devices because of their ultra high energy density. Until now, the critical scientific challenges facing Li–O2batteries are the absence of advanced electrode architectures and highly efficient electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which seriously hinder the commercialization of this technology. In the last few years, a number of strategies have been devoted to exploring new catalysts with novel structures to enhance the battery performance. Among various of oxygen electrode catalysts, carbon-based materials have triggered tremendous attention as suitable cathode catalysts for Li–O2batteries due to the reasonable structures and the balance of catalytic activity, durability and cost. In this review, we summarize the recent advances and basic understandings related to the carbon-based oxygen electrode catalytic materials, including nanostructured carbon materials (one-dimensional (1D) carbon nanotubes and carbon nanofibers, 2D graphene nanosheets, 3D hierarchical architectures and their doped structures), and metal/metal oxide-nanocarbon hybrid materials (nanocarbon supporting metal/metal oxide and nanocarbon encapsulating metal/metal oxide). Finally, several key points and research directions of the future design for highly efficient catalysts for practical Li–O2batteries are proposed based on the fundamental understandings and achievements of this battery field. © 2016 Science Press

关 键 词:Carbon nanofibers Catalyst activity CATALYSTS Electric batteries Electrocatalysis Electrocatalysts Electrodes Electrolytic reduction LITHIUM Lithium batteries OXYGEN Secondary batteries YARN 

分 类 号:TM910[电气工程—电力电子与电力传动] O643.36[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象