Uniform Convergence Rate of Estimators of Autocovariances in Partly Linear Regression Models with Correlated Errors  

Uniform Convergence Rate of Estimators of Autocovariances in Partly Linear Regression Models with Correlated Errors

在线阅读下载全文

作  者:Jin-hongYou GemaiChen MinChen ue-leiJiang 

机构地区:[1]UniversityofRegina,Regina,Saskatchewan,S4S0A2,Canada [2]UniversityofCalgary,Calgary,Alberta,T2N1N4,Canada [3]AcademyofMathematicsandSystemSciences,ChineseAcademyofSciences,Beijing100080.China

出  处:《Acta Mathematicae Applicatae Sinica》2003年第3期363-370,共8页应用数学学报(英文版)

基  金:the Knowledge Innovation Project of Chinese Academy of Sciences (No.KZCX2-SW-118);the National Natural Science Foundation of China (No.70221001).

摘  要:Consider the partly linear regression model , where y <SUB>i </SUB>’s are responses, are known and nonrandom design points, is a compact set in the real line , &#946; = (&#946; <SUB>1</SUB>, ··· , &#946; <SUB>p </SUB>)' is an unknown parameter vector, g(·) is an unknown function and {&#949; <SUB>i </SUB>} is a linear process, i.e., , where e <SUB>j </SUB>are i.i.d. random variables with zero mean and variance . Drawing upon B-spline estimation of g(·) and least squares estimation of &#946;, we construct estimators of the autocovariances of {&#949; <SUB>i </SUB>}. The uniform strong convergence rate of these estimators to their true values is then established. These results not only are a compensation for those of [23], but also have some application in modeling error structure. When the errors {&#949; <SUB>i </SUB>} are an ARMA process, our result can be used to develop a consistent procedure for determining the order of the ARMA process and identifying the non-zero coeffcients of the process. Moreover, our result can be used to construct the asymptotically effcient estimators for parameters in the ARMA error process.Consider the partly linear regression model , where y <SUB>i </SUB>’s are responses, are known and nonrandom design points, is a compact set in the real line , &#946; = (&#946; <SUB>1</SUB>, ··· , &#946; <SUB>p </SUB>)' is an unknown parameter vector, g(·) is an unknown function and {&#949; <SUB>i </SUB>} is a linear process, i.e., , where e <SUB>j </SUB>are i.i.d. random variables with zero mean and variance . Drawing upon B-spline estimation of g(·) and least squares estimation of &#946;, we construct estimators of the autocovariances of {&#949; <SUB>i </SUB>}. The uniform strong convergence rate of these estimators to their true values is then established. These results not only are a compensation for those of [23], but also have some application in modeling error structure. When the errors {&#949; <SUB>i </SUB>} are an ARMA process, our result can be used to develop a consistent procedure for determining the order of the ARMA process and identifying the non-zero coeffcients of the process. Moreover, our result can be used to construct the asymptotically effcient estimators for parameters in the ARMA error process.

关 键 词:Uniform strong convergence rate autocovariance and autocorrelation B-spline estimation correlated error partly linear regression model 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象