COD Removal Efficiencies of Some Aromatic Compounds in Supercritical Water Oxidation  被引量:8

COD Removal Efficiencies of Some Aromatic Compounds in Supercritical Water Oxidation

在线阅读下载全文

作  者:陈丰秋 吴素芳 陈纪忠 戎顺熙 

出  处:《Chinese Journal of Chemical Engineering》2001年第2期137-140,共4页中国化学工程学报(英文版)

基  金:the Research Foundation of SINOPEC(No. X596006) and Cao Guangbiao's Advanced Research Foundation of Zhejiang University.

摘  要:Some aromatic compounds, phenol, aniline and nitrobenzene, were oxidized in supercritical water. It was experimentally found that the chemical oxygen demand (COD) removal efficiency of these organic compounds can achieve a high level more than 90% in a short residence time at temperatures high enough. As temperature, pressure and residence time increase, the COD removal efficiencies of the organic compounds would all increase. It is also found that temperature and residence time offer greater influences on the oxidation process than pressure. The difficulty in oxidizing these three compounds is in the order of nitrobenzene > aniline > Phenol. In addition, it is extremely difficult to oxidize aniline and nitrobenzene to CO2 and H2O at the temperature lower than 873.15 K and 923.15 K, respectively. Only at the temperature higher than 873.15 K and 923.15 K, respectively, the COD removal efficiencies of 90% of aniline and nitrobenzene can be achieved.Some aromatic compounds, phenol, aniline and nitrobenzene, were oxidized in supercritical water. It was experimentally found that the chemical oxygen demand (COD) removal efficiency of these organic compounds can achieve a high level more than 90% in a short residence time at temperatures high enough. As temperature, pressure and residence time increase, the COD removal efficiencies of the organic compounds would all increase. It is also found that temperature and residence time offer greater influences on the oxidation process than pressure. The difficulty in oxidizing these three compounds is in the order of nitrobenzene > aniline > phenol. In addition, it is extremely difficult to oxidize aniline and nitrobenzene to CO2 and H2O at the temperature lower than 873.15 K and 923.15K, respectively. Only at the temperature higher than 873.15 K and 923.15 K, respectively, the COD removal efficiencies of 90% of aniline and nitrobenzene can be achieved.

关 键 词:PHENOL ANILINE NITROBENZENE supercritical water oxidation chemical oxygen demand 

分 类 号:TQ02[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象