检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高旭东[1] 殷保群[1] 唐昊[1] 奚宏生[1]
出 处:《系统仿真学报》2003年第11期1574-1576,共3页Journal of System Simulation
基 金:国家自然科学基金(69974037);安徽省自然科学基金(01042308)
摘 要:Markov控制过程是研究随机离散事件动态系统性能优化问题的一个重要模型,并在许多实际工程问题中有着广泛的应用。在Markov性能势理论的基础上,我们讨论了一类连续时间Markov控制过程在紧致行动集上的性能优化仿真问题。由于实际系统的状态空间往往非常巨大,通常的串行仿真算法,可能耗时过长,也可能由于硬件限制而无法实现,故我们提出了一种基于性能势的并行仿真优化算法,来寻找系统的最优平稳策略。一个仿真实例表明该算法有较好的运行效率。该算法可应用于大规模实际系统的性能优化。A Markov control process is an important model for performance optimization in stochastic discrete event dynamic systems, and is widely used in many practical engineering problems. Based on the theory of Markov performance potential, the problems of performance optimization simulation for a class of continuous-time Markov control processes are studied. Since the state space of an actual system is often very large, when applying traditional serial simulation algorithms, long time is possibly spent, or it is impossibly realized because of hardware. A parallel simulation optimization algorithm based on performance potentials is proposed to find the optimal stationary policy of a system. A simulation example shows that the algorithm can achieve high speedup. The algorithm can be used in optimization for large-scale practical systems.
关 键 词:性能势 并行仿真算法 连续时间Markov控制过程 紧致行动集
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120