检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子工程学院,合肥230037
出 处:《微波学报》2015年第4期1-8,共8页Journal of Microwaves
基 金:国家自然科学基金(60702015)
摘 要:测向敏感性分析对高性能阵列雷达系统设计和参数校正具有重要意义。针对MIMO雷达系统误差的测向敏感性问题,基于MUSIC算法的一阶泰勒展开,研究了由MIMO雷达收、发阵元幅度、相位和位置误差引起的实际阵列与理想阵列间存在的流型误差对测向性能的影响;三种误差条件下分别定义和推导了任意阵型配置下MIMO雷达测向敏感因子、方位估计RMSE以及成功分辨误差门限的表达式。仿真实验验证了理论推导和分析方法的有效性,相关结论可为MIMO雷达系统分析与设计提供参考。Direction finding sensitivities( DFSs) analysis is an integral part of the high- performance radar system design and calibration of various parameters. Based on the first- order sensitivity analysis of MUSIC algorithm to system errors( SEs) which causes differences between the array manifold used by MUSIC and the true array manifold,the direction finding sensitivity for colocated MIMO radar is investigated. The performance of direction finding in the presence of phase,gain or location errors of the element in transmitting and receiving array and the effect of virtual extend ability for MIMO radar with respect to system errors is further analyzed and tested by simulation. Additionally,for a given arbitrary antenna geometry,the formulas of DFSs and MSEs for MIMO radar using MUSIC algorithm are developed for relatively small SEs. And the formula for computing the ambiguity thresholds of the MUSIC algorithm as a function of target separation and other DF system parameters are derived for relatively large SEs. The presented analysis methods and related conclusions could be as the complement of MIMO radar system analysis and design.
分 类 号:TN958[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222