基于拉伸式COLD传感器的DOA和极化参数估计  

Joint DOA and Polarization Parameters Estimation Based on Stretched COLD Sensors

在线阅读下载全文

作  者:赵继超[1] 陶海红[1] 高志奇[1] 

机构地区:[1]西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071

出  处:《微波学报》2015年第6期64-70,共7页Journal of Microwaves

基  金:国家重点基础研究发展计划(973计划)(2011CB707001);国家自然科学基金(60971108);西安电子科技大学基本科研业务费项目(BDY061428)

摘  要:同点正交配置磁环和电偶极子(Co-centered orthogonal loop and dipole,COLD)是一种最常用的二分量电磁矢量传感器,但是COLD传感器没有充分利用磁环和电偶极子分量的空间信息。本文针对由COLD传感器组成的均匀线阵(Uniform linear array,ULA),将所有磁环和电偶极子分量分别沿两个正交方向均匀拉伸,形成L形阵,扩展阵列的空间孔径,并提出了基于广义旋转不变的降维多重信号分类算法(Dimension reduction multiple signal classification method based on generalized rotational invariance,GRIDR-MUSIC)。所提算法利用L形阵的几何构形,将导向矢量分隔成三部分,通过两个正交ULA的广义旋转不变结构,分别估计各个部分,使得波达角(Direction of arrival)和极化参数仅需一维谱峰搜索就可以估计得到,且无需参数匹配。最后,仿真实验验证了所提算法的有效性。The co-centered orthogonal loop and dipole( COLD) sensor is one of the most widely used two-component electromagnetic vector sensors. However,the COLD sensor does not make full use of the two components' spatial aperture.The uniform linear array( ULA),which consists of COLD sensors,is considered in this paper. In order to extend the spatial aperture,all loops and dipoles are uniformly stretched along two orthogonal directions,respectively,and an L-shaped array is formed. A dimension reduction multiple signal classification method based on generalized rotational invariance( GRIDR-MUSIC) is proposed. The proposed algorithm uses the L-shaped array geometry to separate the steering vector into three parts,and utilizes generalized rotational invariance between the two orthogonal ULAs to estimate each part,so that direction of arrival( DOA) and polarization parameters can be estimated by only one-dimensional spectral peak search. In addition,the proposed algorithm does not require parameters matching. Finally,the numerical simulations show the effectiveness of the proposed algorithm.

关 键 词:同点配置正交磁环-电偶极子 波达角 极化 基于广义旋转不变的降维多重信号分类算法 

分 类 号:TN911.7[电子电信—通信与信息系统] TP212[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象