机构地区:[1]LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P.R.China [2]LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P.R.Chinay using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively [3]the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic., respectively . The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories , the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time , the methods of removing the remained ellipticity are further obtained from the nonlinear PSE .
出 处:《Applied Mathematics and Mechanics(English Edition)》2003年第11期1334-1341,共8页应用数学和力学(英文版)
基 金:the National Natural Science Foundation of China (10032050);the National 863 Program Foundation of China (2002AA633100)
摘 要:By using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively; the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic., respectively . The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories , the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time , the methods of removing the remained ellipticity are further obtained from the nonlinear PSE .By using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively; the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic., respectively . The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories , the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time , the methods of removing the remained ellipticity are further obtained from the nonlinear PSE .
关 键 词:compressible fluid parabolic stability equation characteristic sub-characteristic
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...