检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Huang Wei Zhang Lixin Jiang YeDept.of Math.,Zhejiang Univ.,Hangzhou 310028,China.
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2003年第4期482-488,共7页高校应用数学学报(英文版)(B辑)
基 金:Research supported by the National Natural Science Foundation of China (1 0 0 71 0 72 )
摘 要:Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞n=1ρ 2/d(2n)<∞, where d=2,if -1<b<0 and d>2(b+1),if b≥0. It is proved that,for any b>-1, limε0ε 2(b+1)∞n=1(loglogn)bnlognP{M n≥εσ2nloglogn}= 2(b+1)πГ(b+3/2)∞k=0(-1)k(2k+1) 2b+2,where Г(·) is a Gamma function.Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞n=1ρ 2/d(2n)<∞, where d=2,if -1<b<0 and d>2(b+1),if b≥0. It is proved that,for any b>-1, limε0ε 2(b+1)∞n=1(loglogn)bnlognP{M n≥εσ2nloglogn}= 2(b+1)πГ(b+3/2)∞k=0(-1)k(2k+1) 2b+2,where Г(·) is a Gamma function.
关 键 词:mixing random variable law of iterated logarithm tail probabilities
分 类 号:O211[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.98.87