检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学土木工程学院,重庆400045 [2]上海交通大学建筑工程学院,上海200030
出 处:《岩石力学与工程学报》2004年第1期1-6,共6页Chinese Journal of Rock Mechanics and Engineering
基 金:国家自然基金(59879012;59649008)资助项目
摘 要:岩土工程的开挖卸荷往往产生拉应力,因此研究单轴拉伸条件下细观非均匀性岩石的变形局部化和全过程应力-应变关系具有重要的理论和现实意义。利用损伤力学理论研究了岩石在线弹性阶段、非线性强化阶段、应力跌落、应变软化阶段的拉伸应力-应变关系,并分析了产生应力跌落和应变软化的主要原因是损伤和变形局部化,将损伤和变形局部化引入本构模型是和以往模型的重要区别。通过与实验成果的对比分析,验证了模型的正确性和有效性。Stress redistribution induced by excavation results in the tensile zone in parts of the surrounding rock mass. A micromechanics-based model is proposed for brittle rock undergoing irreversible changes of microscopics structures due to microcrack growth. The influences of all microcracks with different sizes and orientations are introduced into the overall compliance tensor by using the statistical average method. Overall compliances of damaged brittle rock are nonsymmetric and anisotropic. Micromechanical kinetic equations for microcrack growth characterizing the ‘process domains’of active microcracks are introduced. These ‘process domains’together with ‘open microcrack domains’domcom pletely define the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Special attention is paid to the transition from structural rearrangements on the microscale to the macroscopic inelastic strain. Analyses are made on the localization of strain and damage. Results show that the onset of localization is very sensitive to the details of a constitutive law. The complete stress-strain relation including linear elasticity,non-linear hardening,rapid stress drop and strain softening is established. The behaviour of rapid stress drop and strain softening are due to localization of strain and damage. The constitutive model to analyse the localization of strain and damage is distinct from the conventional model. An illustrative example is worked out to show the capability of the presented model to predict experimentally observed reponse of brittle rock. It is emphasized that no fitted phenomenological material parameter is employed in the proposed damage model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13