高阶剪切变形理论下两邻边铰支两邻边夹紧复合材料层板的几何非线性分析  被引量:3

GEOMETRICALLY NONLINEAR ANALYSIS OF LAMINATED COMPOSITE PLATES WITH TWO ADJACENT EDGES SIMPLY SUPPORTED AND THE OTHER TWO ADJACENT EDGES CLAMPED USING HIGH-ORDER SHEAR DEFORMATION THEORY

在线阅读下载全文

作  者:杨加明[1,2] 孙良新[3] 刘志和[1] 鲁宇明[1] 

机构地区:[1]南昌航空工业学院土木建筑系 [2]南京航空航天大学航空宇航学院,南京210016 [3]南京航空航天大学航空宇航学院

出  处:《工程力学》2003年第4期92-98,共7页Engineering Mechanics

基  金:国家教委博士点基金(98028709);江西省材料科学与工程研究中心开放基金资助项目(CL0209)

摘  要:首先用虚位移原理推导出以位移形式表达的Reddy型高阶剪切变形理论的复合材料层板的非线性控制方程。选定的5个位移函数均满足两邻边铰支两邻边夹紧边界条件。用Galerkin方法把无量纲化之后的控制方程组转化为非线性代数方程组。稳定化双共轭梯度法用于求解稀疏线性方程组,可调节参数的修正迭代法用于求解非线性代数方程组。最后求出了不同复合材料的挠度和弯矩值并同Kirchhoff及Reissner-Mindlin板的结果进行了比较。Based on Reddy's high-order shear deformation theory, geometrically nonlinear governing equations of composite laminated plates are obtained in the form of displacements by the virtual displacement principle. All five-displacement functions satisfy the boundary conditions that two adjacent edges simply supported and the other two adjacent edges clamped. Galerkin's method is used to transfer nondimensional governing equations to an infinite set of nonlinear algebraic equations. Linear equations of sparse matrix are solved by Biconjugate Gradients Stabilized Method and nonlinear algebraic equations are solved by parameter-regulated iterative procedures. Numerical results of deflection and bending-moment are presented and compared with that of Kirchhoff and Reissner-Mindlin plate theory for different composite materials.

关 键 词:复合材料层板 高阶剪切变形理论 几何非线性 两邻边铰支两邻边夹紧 

分 类 号:TB33[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象