检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋依群[1] 焦连伟[2] 倪以信[3] 文福拴[3] 侯志俭[1] 吴复立[3]
机构地区:[1]上海交通大学电气工程系,上海200240 [2]清华大学电机与应用电子技术系,北京100084 [3]香港大学电机及电子工程系
出 处:《中国电机工程学报》2003年第12期23-27,共5页Proceedings of the CSEE
基 金:国家重点基础研究专项经费项目(G1998020305);香港特别行政区政府资助基金(RGC)~~
摘 要:该文应用微增响应猜测(Conjectural Variation,CV)方法构造一种在不完全信息情况下的寡头竞争电力现货市场中发电公司通过动态学习改进对竞争对手的微增响应猜测的新投标策略,指出当各发电公司采用该文提出的投标策略进行不断重复的投标竞争后,市场所达到的均衡点为Nash均衡点。算例计算结果说明各发电公司具有进行动态学习的动力,但是当所有公司进行学习时将会降低市场结清电价从而提高电力市场的社会总效益。算例计算结果还说明了电力需求弹性对学习过程的收敛性具有积极作用。A new bidding approach based on conjectural variation (CV) improvement via dynamic learning is developed for generation firms to construct strategic bidding in oligopolistic spot electricity market with incomplete information. It is shown that the equilibrium reached in the market is a Nash equilibrium when the proposed bidding approach is utilized, individual firms have motivations to conduct learning; learning of all firms will decrease the clearing price of spot markets and improve the social welfare in oligopolistic electricity markets, as well as the elasticity of demand has positive impacts on the convergence of learning process.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222