SUB-SIGNATURE OPERATORS,η-INVARIANTS AND A RIEMANN-ROCH THEOREM FOR FLAT VECTOR BUNDLES  被引量:1

SUB-SIGNATURE OPERATORS,η-INVARIANTS AND A RIEMANN-ROCH THEOREM FOR FLAT VECTOR BUNDLES

在线阅读下载全文

作  者:ZHANGWEIPING 

机构地区:[1]NankaiInstituteofMathematics,NankaiUniversity,Tianjin300071,China

出  处:《Chinese Annals of Mathematics,Series B》2004年第1期7-36,共30页数学年刊(B辑英文版)

基  金:Project supported by the National Natural Science Foundation of China; the Cheung-Kong Scholarship of the Ministry of Education of China; the Qiu Shi Foundation and the 973 Project of the Ministry of Science and Technology of China.

摘  要:The author presents an extension of the Atiyah-Patodi-Singer invariant for unitary representations [2,3] to the non-unitary case, as well as to the case where the base manifold admits certain finer structures. In particular, when the base manifold has a fibration structure, a Riemann-Roch theorem for these invariants is established by computing the adiabatic limits of the associated η-invariants.

关 键 词:Sub-signature operators η-Invariants Flat vector bundles Riemann-Roch 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象