检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学土木工程系,北京100084 [2]贵州工业大学,贵阳550003
出 处:《工程力学》2003年第6期81-85,共5页Engineering Mechanics
基 金:国家杰出青年科学基金资助项目(50025822);北京市科委资助项目(H010610230112)
摘 要:H.B.Jayaraman在80年代推导的悬链线索元有限元计算精度高,特别适用于精度要求比较高的大型索结构,但需要已知索原长。而索结构施工时通常是以控制索端张拉力或测量预应力状态下的索长来达到结构的设计应力状态。推导了索端张力及预应力状态下索长与索原长的增量函数关系,采用迭代方法求解索原长,计算稳定且收敛快。The catenary finite element deduced by H.B.Jayaraman in 1980抯 is very suitable to the calculation of large-scale cable structures for its higher precision compared to other cable finite elements. The initial unstressed length of catenary cable is indispensable in order to start the procedure proposed by H.B.Jayaraman. In practice, however, the desired stress level of cable structures is obtained through controlling the end tension forces of cables or measuring the stressed length of cables. This makes the application of catenary cable finite element difficult. In this paper, the incremental relationship between the stressed length or end tension forces and the unstressed length of cables is derived and the corresponding iterative procedure is presented. The results of three examples show that the method proposed in this paper is stable and quickly convergent.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145