网络入侵检测系统中的数据缩减技术  被引量:3

Data Reduction in Network Based on the Intrusion Detection System

在线阅读下载全文

作  者:邹涛[1] 孙宏伟[1] 田新广[1] 张尔扬[1] 

机构地区:[1]国防科技大学电子科学与工程学院,湖南长沙410073

出  处:《国防科技大学学报》2003年第6期16-20,共5页Journal of National University of Defense Technology

摘  要:在进行事件分析之前,网络入侵检测系统首先要面对数据缩减的问题。以ANIDS为背景,分析了两种重要的数据缩减技术:相关特征子集选择和特征再构造。提出了一种基于Wrapper方法的最优特征子集选取算法SRRW。在考虑学习算法偏置的情况下,通过识别强相关特征并引入约束,能够更快地搜索并获得最优的相关特征子集。从特征再构造角度出发实现数据缩减,并通过因子负荷量矩阵分析了原始特征之间的相关性。NIDSs deal with the problem of data reduction before analyzing the events. Two important measures used in ANIDS are proposed: FSS and new feature construction. A novel algorithm named SRRW is put forward first, which can produce OFS by recognizing all strongly relevant features and restrict them in searching process. A feature construction method is used to get the OFS. The correlations between the original features can be analyzed by factor loading matrix.

关 键 词:网络入侵检测 数据缩减 相关特征选取 主成分分析 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象