检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学土木工程系
出 处:《天津大学学报》1992年第4期91-99,共9页Journal of Tianjin University(Science and Technology)
基 金:国家自然科学基金
摘 要:采用断裂力学的方法,通过有限元分析,提出钢筋普通砼和钢筋陶粒砼受弯构件抗裂度计算公式。该方法全面考虑了砼强度等级、配筋率、受拉钢筋位置、试件尺寸效应对钢筋应力的影响,对大尺寸试件用Weibull尺寸效应反映,既考虑截面高度又考虑截面宽度的影响,计算更为合理。用此抗裂度计算公式对33根梁的计算结果与试验符合良好。本文公式不仅能解决一般受弯构件的抗裂度计算问题,同时可对带有较大显著裂缝(包括构造缝)的剩余截面进行抗裂度计算。In this paper, on the basis of fracture mechanics by finite element analysis, the formula for evaluating the cracking resistance strength of ordinary reinforced concrete as well as reinforced ceramsite concrete bending members is presented. In the presented method the effects of concrete strength, steel ratio, location of tensile reinforcing bars, size of specimens on the stress of reinforcing bars is considered. For large size specimens Weibull's size effect is taken ioto account. Both effects of cross-section height and cross-section width are considered. These measures make the calculation more reasonable. Calculation results of cracking resistance strength of 33 beams by the present formula Show a good agreement with experimental resalt. In addition, by using the present formula the cracking resistance strength can be evaluated not only for ordinary bending members, but also for residual cross-section with obviously larger cracks (including constitutive cracks) can be evaluated.
分 类 号:TU528.571[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3