Structure design of high-performance Cu-based shape memory alloys  被引量:9

Structure design of high-performance Cu-based shape memory alloys

在线阅读下载全文

作  者:Jian-Xin Xie Ji-Li Liu Hai-You Huang 

机构地区:[1]State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing [2]Beijing Laboratory of Metallic Materials and Processing for Modern Transportation

出  处:《Rare Metals》2015年第9期607-624,共18页稀有金属(英文版)

基  金:financially supported by the National Basic Research Program of China (No. 2011CB606300);the National Natural Science Foundation of China (No. 51104015);the Fundamental Research Funds for the Central Universities (No. FRF-TP-14-089A2)

摘  要:The effects of various structure factors on the properties(superelasticity mainly) of Cu-based shape memory alloys(SMAs) were systematically evaluated in this review article through literatures combining with our work. It is concluded that besides the decisive role of grain orientation, the grain boundary(GB) characteristics also play important roles in the superelasticity, which include GB area, GB type, GB morphology and GB direction in descending order of the effect significance. According to the above results, the prior principles of structure design are proposed for high-performance Cu-based SMAs from most to least important:(1) obtaining grain orientation with high phase transformation strain;(2) increasing grain size or reducing GB area;(3) obtaining straight low-energy GBs, especially low-angle GBs;(4) trying to make GB direction parallel to external stress. Consistent with the main or all principles, the bamboo-like-grained and columnar-grained(CG) Cu-based SMAs show excellent comprehensive properties.The effects of various structure factors on the properties(superelasticity mainly) of Cu-based shape memory alloys(SMAs) were systematically evaluated in this review article through literatures combining with our work. It is concluded that besides the decisive role of grain orientation, the grain boundary(GB) characteristics also play important roles in the superelasticity, which include GB area, GB type, GB morphology and GB direction in descending order of the effect significance. According to the above results, the prior principles of structure design are proposed for high-performance Cu-based SMAs from most to least important:(1) obtaining grain orientation with high phase transformation strain;(2) increasing grain size or reducing GB area;(3) obtaining straight low-energy GBs, especially low-angle GBs;(4) trying to make GB direction parallel to external stress. Consistent with the main or all principles, the bamboo-like-grained and columnar-grained(CG) Cu-based SMAs show excellent comprehensive properties.

关 键 词:Cu-based shape memory alloy SUPERELASTICITY Cu–Al– 

分 类 号:TG139.6[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象