出 处:《Rare Metals》2018年第12期1027-1034,共8页稀有金属(英文版)
基 金:financially supported by the National Key R&D Program of China (No.2017YFB0701503);the National Basic Research Program of China(No.2011CB706801)
摘 要:In the present investigation, a coupled crystal plasticity finite-element(CPFE) and cellular automaton(CA) model was developed to predict the microstructure of recrystallization in single-crystal(SX) Ni-based superalloy.The quasi-static compressive tests of [001] orientated SX DD6 superalloy were conducted on Gleeble3500 tester to calibrate the CPFE model based on crystal slip kinematics.The simulated stress-strain curve agrees well with the experimental results. Quantitative deformation amount was introduced in the deformed samples of simulation and experiment, and these samples were subsequently subjected to the standard solution heat treatment(SSHT).Results of CA simulation show that the recrystallization(RX) nucleation tends to occur at the third stage of SSHT process due to the high critical temperature of RX nucleation for the samples deformed at room temperature. The inhomogeneous RX grains gradually coarsen and compete to reach more stable status by reducing the system energy.Simulated RX grain density decreases from 7.500 to1.875 mm,agreeing well with the value of 1.920 mmfrom electron backscattered diffraction(EBSD) detection of the experimental sample.In the present investigation, a coupled crystal plasticity finite-element(CPFE) and cellular automaton(CA) model was developed to predict the microstructure of recrystallization in single-crystal(SX) Ni-based superalloy.The quasi-static compressive tests of [001] orientated SX DD6 superalloy were conducted on Gleeble3500 tester to calibrate the CPFE model based on crystal slip kinematics.The simulated stress-strain curve agrees well with the experimental results. Quantitative deformation amount was introduced in the deformed samples of simulation and experiment, and these samples were subsequently subjected to the standard solution heat treatment(SSHT).Results of CA simulation show that the recrystallization(RX) nucleation tends to occur at the third stage of SSHT process due to the high critical temperature of RX nucleation for the samples deformed at room temperature. The inhomogeneous RX grains gradually coarsen and compete to reach more stable status by reducing the system energy.Simulated RX grain density decreases from 7.500 to1.875 mm^(-1),agreeing well with the value of 1.920 mm^(-1)from electron backscattered diffraction(EBSD) detection of the experimental sample.
关 键 词:RECRYSTALLIZATION Single crystal Crystal plasticity Cellular automaton MICROSTRUCTURE
分 类 号:TG132.3[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...