Structural Design and Dynamic Characteristics of Overloaded Horizontal Servo Cylinder for Resisting Dynamic Partial Load  

Structural Design and Dynamic Characteristics of Overloaded Horizontal Servo Cylinder for Resisting Dynamic Partial Load

在线阅读下载全文

作  者:Linan Ma Qingxue Huang Lifeng Ma Qiangjun Ma Wenze Zhang Heyong Han 

机构地区:[1]Collaboration Innovation Center of Taiyuan Heavy Machinery Equipment, Taiyuan University of Science and Technology [2]Taiyuan University of Technology

出  处:《Chinese Journal of Mechanical Engineering》2019年第1期103-112,共10页中国机械工程学报(英文版)

基  金:Supported by Nation Youth Science Foundation of China(Grant No.51505315);Collaboration Innovation Center of Taiyuan Heavy Machinery Equipment and Shanxi Provincial Natural Science Foundation of China(Grant No.201701D221135);Innovative Project of Graduate Education in Shanxi Province of China(Grant No.2016BY132)

摘  要:When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the frequency response and control accuracy of the servo cylinder. Based on this partial load, increased friction can lead to cylinder bore scu ng, leakage, lack of output power, or even system failure. In this paper, a novel asymmetric static-pressure support structure is proposed based on the principle of hydrostatic support. The radial component force of a dynamic partial load is balanced by cooperation between the support oil cushion of the variable hydraulic pressure support structure, oil cushion of the supportive force, and the damper. Adaptive control of the servo cylinder piston rod, guide sleeve, and piston, as well as the cylinder oil film friction between lubricated surfaces is achieved. In this paper, theoretical design and analysis of the traditional hydrostatic bearing structure and novel structure are presented. A hydraulic dynamic shear scissor is used as a research target to derive a structural dynamic model. Comparative simulations are performed using Matlab Simulink. Additionally, flow field analysis of the novel structure is performed, which verifies the rationality and feasibility of the proposed structure and system.When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the frequency response and control accuracy of the servo cylinder. Based on this partial load, increased friction can lead to cylinder bore scu ng, leakage, lack of output power, or even system failure. In this paper, a novel asymmetric static-pressure support structure is proposed based on the principle of hydrostatic support. The radial component force of a dynamic partial load is balanced by cooperation between the support oil cushion of the variable hydraulic pressure support structure, oil cushion of the supportive force, and the damper. Adaptive control of the servo cylinder piston rod, guide sleeve, and piston, as well as the cylinder oil film friction between lubricated surfaces is achieved. In this paper, theoretical design and analysis of the traditional hydrostatic bearing structure and novel structure are presented. A hydraulic dynamic shear scissor is used as a research target to derive a structural dynamic model. Comparative simulations are performed using Matlab Simulink. Additionally, flow field analysis of the novel structure is performed, which verifies the rationality and feasibility of the proposed structure and system.

关 键 词:DYNAMIC partial load SERVO CYLINDER Asymmetrical static-pressure support structure BEARING characteristics 

分 类 号:TH137.5[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象