PENETRATION QUALITY EVALUATION IN ROBOTIZED ARC WELDING BASED ON SUPP0RT VECTOR MACHINE  

在线阅读下载全文

作  者:YeFeng SongYonglun LiDi LaiYizong 

机构地区:[1]ColiegeofMechanicalEngineering,SouthChinaUniversityofTechnology,Guangzhou510640,China [2]CollegeofMechatronicEngineering,BeijingUniversityofTechnology,Beijing100022,China [3]CollegeofMechanicalEngineering,SouthChinaUniversityofTechnology,Guangzhou510640,China

出  处:《Chinese Journal of Mechanical Engineering》2003年第4期387-390,共4页中国机械工程学报(英文版)

基  金:National Natural Science Foundation of China (No.59785004);Provincial Natural Science Foundation of Guangdong (No.000376)

摘  要:A quality monitoring method by means of support vector machines (SVM) forrobotized gas metal arc welding (GMAW) is introduced. Through the feature extraction of the weldingprocess signal, a SVM classifier is constructed to establish the relationship between the feature ofprocess parameters and the quality of weld penetration. Under the samples obtained from auto partswelding production line, the learning machine with a radial basis function kernel shows goodperformance. And this method can be feasible to identity defect online in welding production.A quality monitoring method by means of support vector machines (SVM) forrobotized gas metal arc welding (GMAW) is introduced. Through the feature extraction of the weldingprocess signal, a SVM classifier is constructed to establish the relationship between the feature ofprocess parameters and the quality of weld penetration. Under the samples obtained from auto partswelding production line, the learning machine with a radial basis function kernel shows goodperformance. And this method can be feasible to identity defect online in welding production.

关 键 词:WELDING Quality monitoring Support vector machine 

分 类 号:TG444[金属学及工艺—焊接]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象