检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜晓彤[1] 罗立民[1] 汪家旺[2] 潘晓敏[1] 周正东[1]
机构地区:[1]东南大学生医系影像实验室,南京210096 [2]南京医科大学一附院,南京210029
出 处:《中国图象图形学报(A辑)》2003年第9期1028-1033,共6页Journal of Image and Graphics
摘 要:肺部肿瘤序列图象的自动分割是计算机肺部肿瘤三维辅助诊断系统的关键技术之一,肿瘤与周围组织关系的复杂性造成分割困难.为了给医生提供准确的肺部肿瘤影像,运用纹理分析和径向基神经网络实现了肺部肿瘤CT图象序列的自动分割,并根据相邻层肿瘤图象灰度、位置的相关性,提出了一种自动获取多层肿瘤区域神经网络训练样本的阈值分割算法.该算法首先计算图象纹理统计参数,以组成特征矢量空间,然后利用自适应径向基神经网络对特征矢量进行分类来实现肿瘤序列图象的自动分割.实验结果表明,与基于灰度的区域增长法和基于梯度算子和形状算子的最优阈值的分割方法相比较,该方法不仅能充分利用肺部肿瘤序列图象的三维信息,还可最大限度地减少人工干预,且分割结果较好地表现了肿瘤形态特征,经临床医生评估,具有较好的临床指导价值.The segmentation of lung tumor serial images is one of the key techniques of Computer Lung Tumor Three-dimensional Aided Diagnosis System. The complex relation between tumor and its adjacent tissue makes it difficult to get good result. For providing doctors more accuate lung image, an automatic segmentation of lung tumor in CT serial images is presented based on texture analysis and radial basis function(RBF) neural network. With the correlation of tumor's gray level and position in sequential slices, we got the training swatch of tumor region automatically. Some second-order statistical texture parameters were computed for composing feature space; a classification procedure based on RBF neural network was applied to this space to segment the tumor. Compared with region growth algorithm and the multi-criterion segmentation algorithm, the experiment demonstrates that the proposed method can make full use of three-dimensional information of tumor serial images, and reduce manual intervention as possible. The segment results also confirm the validity and the clinical value of the proposed method.
关 键 词:肺部肿瘤 图象序列 图象分割 辅助诊断系统 计算机图象处理
分 类 号:R445[医药卫生—影像医学与核医学] TP391.41[医药卫生—诊断学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.251.231